Dessadecor-nn.ru

Журнал Dessadecor-NN
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Формула коэффициента устойчивости откоса

Формула коэффициента устойчивости откоса

Прочность земляного полотна определяется в наиболее неблагоприятный период года — период весеннего оттаивания грунта. Продолжительность этого периода обычно невелика и не превышает 1-1.5 недели, поэтому очень важно оперативно выполнить работы в указанный период.

Оценка прочности дорожной одежды выполняется по упругому прогибу установкой динамического нагружения с падающим диском и жестким штампом. В процессе измерения к штампу прикладывают нагрузку несколькими ступенями, которые остаются неизменными до конца испытания. Обычно принимаются следующие ступени: 4,8, 12, 16,20,24 кН. Для каждой ступени вычисляют давление. Относительную упругую деформацию определяют по показаниям двух мессур (приборов для измерения линейных перемещений и деформаций). По данным измерений строят графики зависимости относительной деформации от давления подошвы штампа на грунт при нагружении и разгрузке. По этому графику находят значение расчётной относительной упругой деформации, а затем вычисляют модуль упругости грунта

(3.8)

где π/4 — поправочный коэффициент, учитывающий жёсткость штампа;

(3.9)

где Рнагр, Рразгр — давление штампа на грунт соответственно при нагружении и после разгрузки, Па; µ — коэффициент Пуассона для грунта; — относительная упругая деформация.

По этим данным строят линейный график прочности.

Прочность и устойчивость земляного полотна обеспечивается:

Ø — соблюдением проектных геометрических параметров;

Ø — обеспечением стока поверхностных вод и отводом влаги из-под конструкции дорожной одежды;

Ø — необходимым возвышением бровки земляного полотна над уровнем грунтовых и атмосферных вод;

Ø — возведением земляного полотна из устойчивых грунтов с послойным уплотнением до требуемого значения;

Ø — назначение оптимальной крутизны откосов насыпей и выемок с предохранением их поверхности от оползания, водной и ветровой эрозии.

Устойчивость склонов и откосов рассчитывают из условий плоской задачи: по прочности (1-е предельное состояние) и деформируемости (2-е предельное состояние).

Расчет устойчивости склонов и откосов по прочности сводится к определению коэффициента запаса устойчивости с помощью различных расчетных методов (метод круглоцилиндрической поверхности скольжения, метод горизонтальных сил Маслова-Берера, метод Шахунянца, метод наклонных сил Чугаева и др.), а также к сравнению его с требуемой величиной.

Расчетные характеристики грунтов (объемная масса, угол внутреннего трения и сцепление) следует принимать соответствующими наименее благоприятным условиям устойчивости оползневого склона в годовом и многолетнем циклах.

Геодезической основой расчетной схемы являются расчетные поперечники, характеризующиеся наиболее неблагоприятным сочетанием различных факторов, таких, как высота и крутизна склона, мощность смещающихся масс, расположение слабых прослоек, наклон слоев, уровень грунтовых вод и др.

Целью разработки проекта устройства насыпи был выбор технических решений наиболее рациональных с позиций экономических, технологических, экологических и временных, обеспечивающих надежную конструкцию земляного полотна.

Особенности при выполнении работ:

Выполнение работ по возведению насыпи требует особого внимания к контролю качества ведения работы и её результатов по каждому технологическому процессу и организации научного сопровождения хода строительства.

Своевременное регулирование технологии отсыпки и реакция на процесс и тенденции хода осадок и их стабилизации с регламентацией технологических перерывов.

Соблюдение указаний нормативных документов.

Порядок расчёта устойчивости откосов земляного полотна разработан в соответствии с «Указаниями по расчёту высоких насыпей и глубоких выемок автомобильных дорог».

Коэффициент запаса устойчивости откоса земляного полотна (табл.3.8)

(3.10)

где N — нормальная, по отношению к поверхности скольжения, составляющая веса вышележащего слоя грунта, м; L — длина дуги скольжения в пределах грунта насыпи и основания, м; T — касательная к дуге скольжения составляющая сила веса, т; Q — вес грунта в объёме отсека, т; — угол внутреннего трения грунта насыпи и основания.

Таблица 3.8 — Допускаемые значения коэффициента П

Песчаные грунты с постоянной влажностью

Глинистые грунты с постоянной влажностью и песчаные с переменной влажностью

Глинистые грунты с переменной влажностью

Коэффициент запаса устойчивости откосов оползневых участков после проведения противооползневых мероприятий принимается при расчете по прочности не менее 1,3. При учете сейсмического воздействия величина активных сдвигающих сил должна быть увеличена на сейсмический коэффициент =1,03-1,1. Если общая устойчивость склонов и откосов земляного полотна обеспечена ( =1,3), но есть опасность развития длительных деформаций ползучести во времени, необходимо дополнительно выполнять расчеты по деформируемости.

Читать еще:  Монтируем откосы входной двери

Устойчивость оползневых склонов по деформируемости особенно следует проверять в тех случаях, когда угол внутреннего трения грунтов, слагающих склон, незначителен, а структурное сцепление равно нулю (пластичные глинистые грунты и др.).

Если задаться значением запаса устойчивости ny , то, решив ее относительно h пр , можно найти значение проектной мощности оползня, обеспечивающей заданный запас устойчивости, по формуле:

(3.11)

где — объемный вес грунтов оползневой массы в элементарной призме; и — угол внутреннего трения и сцепление грунтов по поверхности скольжения оползня.

Коэффициент запаса устойчивости не дает возможности оценить количественно как надежность склона, так и степень риска. Это связано с тем, что в прогнозе коэффициента запаса не учитываются разбросы величин внешних сил, геометрических размеров, разброс физических характеристик грунта и т.д. Был принят нормальный закон распределения для всех расчетных величин коэффициента устойчивости и, используя функции Лапласа, установлена крутизна склона при заданной вероятности устойчивости склона

(3.12)

где Мсопр — момент сопротивления вращению объема грунта вокруг определенной точки; Мвращ— величина вращающего момента.

Формула показывает, что при коэффициенте запаса устойчивости вероятность обрушения П=0,5. Это означает, что каждый второй склон, запроектированный таким образом, может обрушиться, то есть риск оценивается в 50%.

Определение вида и центра критической дуги скольжения, при которой коэффициент запаса устойчивости будет минимальным, проводится методом последовательного приближения с повторением расчёта устойчивости для нескольких дуг с наименее выгодным соотношением удерживающих и сдвигающих сил. При назначении радиуса дуги скольжения следует учитывать, что критическая дуга обычно образует центральный угол 100-135º. Центр критической дуги скольжения отыскивается следующим образом.

Расчётная схема №1 (рис. 3.24). Центр «О» располагается на линии, проходящей через бровку откоса и точку «В», лежащую на глубине H и расстоянии 3 H от подошвы откоса. Для первого приближения центр критической дуги назначается на пересечении линии СВ и линией АО, проведённой под углом 25º к среднему откосу. При последующих этапах проверки центры О12 ,К намечается выше через (0,25-0,3) H .

Рис. 3.24 — Расчётная схема №1 — для дуг скольжения, проходящих через подошву откоса, кроме случаев, когда угол откоса

Расчётная схема №2 (рис. 3.25). Центр «О» располагается в зоне между вертикалью и нормалью, проведёнными из середины откоса «М». При первом приближении центр назначается на биссектрисе угла FMD на расстоянии Н от точки «М». На продолжении линии ОМ через 0,25 H откладываются центры дуг скольжения для проверочных расчётов. Повышение устойчивости откосов может производиться как путём уполаживания, так и путём устройства контрбанкетов, размер которых определяется величиной необходимой пригрузки внешнего края призмы обрушения.

Рис. 3.25. — Расчётная схема №2 для дуг скольжения, проходящих через основание и подошву откоса при

Алгоритм расчёта устойчивости откосов земляного полотна следующий:

1. Ввод глубины откоса H и радиуса дуги R

2. Расчёт по формуле:

и . (3.13)

3. Расчёт по формуле:

и . (3.14)

. (3.15)

В случае переход к п. 5, иначе переход к п. 6.

5. Определение равнодействующей веса грунта , переход к п.7

(3.16)

6. Определение равнодействующей веса грунта

.. (3.16)

7. Расчёт ординаты

, . (3.17)

8. Расчёт приближения

. (3.18)

9. При условии переход к п. 2, иначе к п.10.

10. Расчёт нормальной составляющей веса вышележащего слоя грунта

(3.19)

и касательной к дуге скольжения составляющей силы веса

(3.20)

, , . (3.21)

, , . (3.22)

13. Расчёт коэффициента запаса устойчивости по формуле

(3.23)

Для повышения устойчивости основания насыпи против выпора или выдавливания могут применяться следующие конструктивные мероприятия:

РАСЧЕТ УСТОЙЧИВОСТИ ОТКОСОВ

Метод круглоцилиндрических поверхностей скольжения. Этот метод широко применяют на практике, так как он дает некоторый запас устойчивости и основан на опытных данных о форме поверхностей скольжения при оползнях вращения, которые на основании многочисленных замеров в натуре (например, Шведской геотехнической комиссии) принимают за круглоцилиндрические, при этом самое невыгодное их положение определяется расчетом. Принятие определенной формы поверхностей скольжения и ряда других допущений (о чем будет сказано ниже) делает этот метод приближенным.

Читать еще:  Облицовка откосов листами гкл

Допустим, что центр круглоцилиндрической поверхности скольжения оползающей призмы находится в точке О (рис. 23). Уравнением равновесия будет ΣМ= 0. Для составления уравнения моментов относительно точки вращения О разбивают призму скольжения АВС вертикальными сечениями на ряд отсеков и принимают вес каждого отсека условно приложенным в точке пересечения веса отсека Рi с соответствующим отрезком дуги скольжения, а силами взаимодействия по вертикальным плоскостям отсека (считая, что давления от соседних отсеков равны по величине, а по направлению противоположны) пренебрегают. Раскладывая далее силы веса Рi на направление радиуса вращения и ему перпендикулярное, составляют уравнение равновесия, приравнивая нулю момент всех сил относительно точки вращения:

ΣTiR – ΣNitgR + cLR =.(66)

Рис. 23.Схема действия сил при расчете откоса по кругло-цилиндрическим поверхностям скольжения

Сокращая выражение (66) на R, получим

ΣTi – ΣNi tgφ + cL =, (67)

где L — длина дуги скольжения АС; φ, с — угол внутреннего трения и сцепление грунта; Ti и Ni — составляющие давления от веса отсеков

За коэффициент устойчивости откоса принимают отношение момента сил удерживающих к моменту сил сдвигающих

η = Муд/Мсдв =Nitgφ + cL) / ΣTi . (68)

Однако решение поставленной задачи определением коэффициента устойчивости для произвольно выбранной дуги поверхности скольжения не заканчивается, так как необходимо из всех возможных дуг поверхностей скольжения выбрать наиболее опасную. Последнее выполняется путем попыток, задаваясь различными положениями точек вращения О; для уменьшения числа попыток существуют некоторые правила, например, проф. Феллениуса (рис. 24, б, где указано положение опасных дуг скольжения) и др.

Для ряда намеченных центров дуг поверхностей скольжения определяют необходимое по условию устойчивости сцепление, соответствующее предельному равновесию заданного откоса, по выражению, вытекающему из соотношения (67), а именно:

c = (ΣTi – ΣNitg φ)/L . (69)

Далее, из всех возможных центров скольжения выбирают тот, для которого требуется максимальная величина сил сцепления. Этот центр принимают за наиболее опасный и для него по формуле (68) вычисляют коэффициент устойчивости η.

Обычно считают, что при значении η > 1,1…1,5 откос будет устойчивым.

Формула (61) будет справедлива лишь для тех случаев, когда дуга поверхности скольжения во всех своих частях является ниспадающей в сторону возможного смещения откоса или склона или (в случае скольжения по цилиндрической поверхности) когда все отсеки кривой скольжения располагаются по одну сторону от направления вертикального радиуса ОА (рис. 24, а).

Рис. 24. К расчету устойчивости откоса по круглоцилиндрическим
поверхностям скольжения:

а – схема сил, действующих по поверхности скольжения;

Формула коэффициента устойчивости откоса

ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА ЗАПАСА УСТОЙЧИВОСТИ ОТКОСОВ ШОРСКОГО МЕСТОРОЖДЕНИЯ

(Кайранбаева А.Б., Арипжанов Е.С., Байгурин Ж.Д.- КазНТУ им.К.И.Сатпаева, Ананин А.И., Диденко А.В.- ДГП «ВНИИцветмет»)

В статье предлагается методика расчета коэффициента устойчивости откоса уступа.

Открытый способ добычи полезных ископаемых при освоении месторождений занимает все больший удельный вес, которые характеризуются сложными горно-геологическими условиями, глубиной карьеров и высокой интенсификацией ведения горных работ. Широкое использование открытого способа по добычи полезного ископаемого требует постоянного изыскания рациональных параметров устойчивых откосов и бортов карьера с целью повышения эффективности освоения месторождения.

Изучению вопросов устойчивости карьерных откосов уделено значительное внимание и разработаны многочисленные методы их оценки при открытой разработки [1 — 3]. Разработка методов оценки устойчивости откосов базируется на изучении изменения напряженно-деформированного состояния массива и закономерностей их проявления. Достоверная оценка устойчивости карьерных откосов позволяет решать задачи по рациональному выбору горнотехнических параметров, т.е. крутизны откосов уступов и в целом бортов карьера.

При проектировании карьеров крутизну откосов рекомендуют в основном на основании сжатой горно-геологической информации или по аналогии других месторождений. При этом угол откоса борта карьера должен быть предельно возможным по величине с целью уменьшения площади карьера на земной поверхности и объемов вскрышных работ. Однако в процессе эксплуатации месторождения угол откоса не всегда подтверждается проектной величине и требует ее пересмотра и обоснования с учетом фактической информации, полученных в результате специальных наблюдений и маркшейдерских измерений [4].

Читать еще:  Пластиковые откос от дождя

Методика определения запаса устойчивости откосов и бортов карьера для Шорского месторождения была рекомендована на основании нарушения устойчивости карьерных откосов по форме обрушения или сползания пород по поверхности скольжения прямоугольных и криволинейных участков поверхности откоса. Расчет коэффициента устойчивости откоса при интегрировании элементарных сил рекомендовано определять по формуле

где СМ сцепление пород в массиве; L –длина поверхности скольжения; ρ- угол внутреннего трения пород в массиве;β i — угол наклона касательной к поверхности скольжения элементарного блока; S 1 -площадь поверхности массива, ограниченная в элементарном блоке; γ— объемный вес пород; Η90 — начало глубины поверхности скольжения, м.

Определение коэффициента устойчивости откоса уступов и бортов карьера производилась по расчетной схеме с учетом комбинации поверхностей скольжения прямоугольных и криволинейных участков (рис.1). В результате проведенных наблюдений установлено, что скольжения начинается с глубины Н=90 м по линии DD 1 , отстоящей от верхней бровки откоса на расстоянии Б i . Ниже эта поверхность идет под углом = 45 0 — ρ/2 (; ρ- угол внутреннего трения пород в массиве) к главному напряжению и на участке D 1 M 1 носит криволинейный характер, аппроксимируясь дугой окружности. Далее поверхность скольжения на участке М1А прямолинейна и выходит в откос под углом μ.

Рисунок 1. Расчетная схема определения коэффициента устойчивости откоса

На основании вышеприведенных положений во ВНИИцветмете разработана компьютерная программ «Борт», которая позволяет рассчитывать коэффициент запаса устойчивости откоса в любой точке борта при заданном его контуре и определенных механических характеристиках пород (сцепление, угол внутреннего трения, объемный вес) и рекомендованы величины коэффициента запаса устойчивости откоса (табл. 1).

Таблица 1. Расчетные величины коэффициента запаса устойчивости откоса борта карьера

Общая характеристика откоса борта

Рекомендуемая величина коэффициента запаса в зависимости от срока стояния борта

Задача 2. Определение устойчивости откоса методом круглоцилиндрических поверхностей скольжения.

Определить коэффициент устойчивости откоса, сложенного однородным грунтом с характеристиками γ, φ, С при заданном положении кривой скольжения в виде дуги окружности с центром в точке О1.

Крутизна откоса 1:m, где m=B/H; откос нагружен равномерно распределенной нагрузкой q.

Высота откоса Н, м

γ, кН/

Примем координатную систему XZ; радиусом R=h+H проводим дугу окружности, выделив массив грунта DAB (рис. 2). Координаты точек: О1(0;-10.3), D(0;4.6), А(5.98;0).

Из треугольника ОО1В имеем , откуда

Тогда ОВ=R∙=14.9∙0.72=10.77 м, а т. В имеет координаты (10.77;0).

Решение проводим по алгоритму:

1. Делим массив DAB на 6 отсеков, нумеруя их снизу вверх:

b 1=b2=2 м, b3=1.8 м, b4=b5=1.6 м, b6=1.59 м

2. Записываем уравнение окружности с центром в т. О1(0;-10.3)

3. Вычисляем правые высоты отсеков.

Для отсека №1, используя уравнение окружности, при х1=2 м получаем z1=4.47 м

Для отсека №2, при х2=4 м получаем z2=4.05 м

Для отсека №3, при х3=5.98 м получаем z3=3.35 м

Для отсека №4, при х4=7.58 м получаем z4=

Для отсека №5, при х5=9.18 м получаем z5=

Для отсека №6, при х6=10.77 м получаем z6=

4. Определяем площади отсеков, пренебрегая кривизной поверхности скольжения в

силу незначительной разницы в длине между хордой и дугой в пределах одного отсека.

5. Определяем вес отсеков (l=1 м); для №4, №5 и №6 учитываем действие нагрузки

Равнодействующие Qi считаем приложенными в точках пересечения соответствующего участка дуги скольжения и вертикальной линии, проходящей через центр тяжести отсека, т.е. в точках с абсциссами:

6. Определяем центральные углы αi между вертикалью и радиусом в точке приложения

веса отсека по формуле:

7. Центральный угол, соответствующий дуге DB:

Длина дуги кривой скольжения определяется и соотношения:

Силы Qi раскладываем на две составляющие: нормальную Ni к заданной поверхности и касательную Ti, учитывая также сцепление грунта по всей поверхности скольжения. Составляем таблицу для расчета коэффициента устойчивости.

Таблица 1. Определение составляющих сил от веса отсеков.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector