Dessadecor-nn.ru

Журнал Dessadecor-NN
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Повышения устойчивости откосов или склонов

Оценка степени устойчивости склона и откоса

Расчет устойчивости откосов и склонов — одна из важнейших инженерно-геологических задач.

Рациональное проектирование и строительство на неустойчивых склонах в настоящее время приобрели наиболее актуальное значение.

При неблагоприятном сочетании разнообразных факторов, массив грунтов, слагающий откос или склон, может перейти в неравновесное состояние и потерять устойчивость.

Основными причинами потери устойчивости откосов и склонов являются:

  • устройство недопустимо крутого откоса или подрезка склона, находящегося в состоянии, близком к предельному;
  • увеличение внешней нагрузки (возведение сооружений, складирование материалов на откосе или вблизи его бровки);
  • изменение внутренних сил (увеличение удельного веса грунта при возрастании его влажности или, напротив, влияние взвешивающего давления воды на грунты);
  • неправильное назначение расчетных характеристик прочности грунта или снижение его сопротивления сдвигу за счет, например, повышения влажности;
  • проявление гидродинамического давления, сейсмических сил, различного рода динамических воздействий (движение транспорта, забивка свай и. т.п.).

Оценка степени устойчивости склона является особенно важным этапом для монтажных и строительных работ для сооружений на оползнеопасных территориях.

Оценки степени устойчивости склона или откоса (наклонной поверхности земли) необходима, при проектировании противооползневых мероприятий, при строительстве на неустойчивых склонах или при размещении объекта строительства на склоне или на борту оврага.

Выбор наиболее эффективных защитных мероприятий и проектных решений от разрушительного воздействия оползней зависит от правильности выявления механизма развития оползня, грамотного выполнения расчетов устойчивости склона и прогноза развития оползневых деформаций на исследуемой территории.

При строительстве зданий и сооружений на склонах, а также при прокладке подземных сооружений (кабельных и канализационных коллекторов, линий метро) вблизи склоновой территории необходимо выполнять работы по оценке оползневой опасности и техногенного влияния на устойчивость склона.

Основными задачами оценки устойчивости существующего оползня являются:

  • определение степени устойчивости;
  • определение степени опасности оползневых подвижек для существующих сооружений и сохранности местности;
  • для установления направления противооползневых мероприятий для предупреждения опасности их действия.

Одним из направлений деятельности ООО «Планета Изысканий» является изучение механизма и закономерностей оползневых процессов, изучение динамики развития оползней, оценка и расчеты устойчивости оползневых склонов и оценка геологического риска экономических и социальных потерь.

Для выполнения расчетов устойчивости склонов и откосов (с выделением участков отрыва, смешения, выпирания, вероятного расчленения блоков массива и пр.), изучаются следующие данные:

  • особенности геологического строения склона, обусловливающее возможность образования оползневых смещений, с выделением зон и поверхностей ослабленных пород;
  • морфологические особенности склона до и после образования оползня;
  • гидрологические особенности склона (границы обводных зон, величины напоров, гидравлические градиенты и пр.);
  • типы и размеры оползня, положение и очертание поверхности скольжения;
  • прочностные и деформационных расчетные характеристики пород, слагающих склон;
  • наиболее неблагоприятные сочетания различных факторов, таких, как высота и крутизна склона, мощность смещающихся масс, расположение слабых прослоек, наклон слоев, уровень грунтовых вод и др.

Инженерами ООО «Планета Изысканий» накоплен большой опыт комплексного изучения склонов от специфических лабораторных испытаний (таких как «плашка по плашке») до дальнейшего геотехнического моделирования. Для комплексной оценки степени устойчивости склона ООО «Планета Изысканий» выполняет следующий виды работ:

  • инженерно-геологические исследования;
  • специфические лабораторные испытания для определения прочностных характеристик грунтов с учетом сформировавшейся поверхности скольжения и изменения гидрогеологического режима;
  • компьютерное моделирование на программных комплексах с учётом уровня грунтовых вод и вибрационных (сейсмических) нагрузок;
  • разработку рекомендаций по укреплению склона или откоса.

Гарантией качества отчетной продукции и профессионализма сотрудников ООО «Планета Изысканий» является успешное прохождение всех наших работ в Мосгосэкспертизе г. Москвы и Главгосэкспертизе.

Об устойчивости откосов и склонов, включая армогрунтовые

В последние годы инженерам все чаще приходится решать задачи, связанные со строительством сооружений на природных склонах, или же возводить искусственные откосы. В связи с этим оползневая опасность и предотвращение катастроф, связанных с ней, становятся все более актуальными проблемами.

В настоящей статье приводятся некоторые актуальные примеры аварий, вызванных некачественными инженерными изысканиями и проектированием на оползневых склонах и предлагаются пути повышения качества расчетов.

Значительная часть населения Земли живет в условиях оползневой опасности. Причин обрушения естественных склонов и искусственных откосов существует очень много. Это и деградация свойств грунтов при увлажнении, и сейсмика, и изменение конфигурации (подмыв, подрезка), и пригрузка, и техногенные воздействия и т.д. Устойчивость возводимых откосов можно оценить достаточно точно, поскольку в них свойства грунтов измеряются и контролируются. Грунтовые массивы можно укреплять нагелями, геосинтетикой, искусственными волокнами (фиброй), подпирать сваями и/или стенами. Для таких откосов нужны свои методы расчета.

Искусственные земляные массивы также подвержены авариям. Приведем для примера две известных крупных аварии, произошедших совсем недавно в США.

Разрушение ограждающей дамбы шламохранилища горной разработки меди и золота (компания British Imperial) в Британской Колумбии на западе Канады (Mount Pouley, Canada, B.C.) в августе 2015 г. привело к утечке ?10 миллионов м3 шлама в окружающие леса, озера и реки. По заключению независимой комиссии экспертов, авария произошла из-за недочетов изысканий (был пропущен прослой слабого грунта в основании дамбы), и проектирования (завышена крутизна откоса).

Вторая авария – это разрушение самой высокой в США армогрунтовой насыпи высотой 73 м, возведенной для удлинения взлетно-посадочной полосы в аэропорту Йигер, вблизи г. Чарльстоун, штат Западная Вирджиния США (Yеager Airport, Charlestone, West Virginia, USA). Причины этой аварии активно обсуждались в Интернете на англоязычном сайте Geotechnical Engineering. Выдвигались различные версии, но единодушия не было. На наш взгляд, армирующие полотнища были слабо скреплены друг с другом на внешней стороне откоса, т.е. фактически «драпировали», а не удерживали грунт от выдавливания наружу. Такие дефекты имеют тенденцию прогрессировать. Это привело к длительному (?2 года) разрушению за счет последовательного выдавливания грунта из насыпи наружу в местах нарушений слабых соединений армирующих элементов. Это началось, возможно, в одной или нескольких точках, а затем процесс разрушения начал прогрессировать.

Читать еще:  Устройство дверных откосов фер

Эти и множество других примеров показывают актуальность разработки и уточнения методов проектирования и расчета устойчивости искусственных откосов, включая армированные.

Методы расчёта устойчивости

Исследования устойчивости откосов/склонов продолжается уже 100 лет, за это время было разработано много методов расчета, которые можно разделить на три следующие группы:

Большинство методов расчета устойчивости откосов/склонов дают решения в условиях плоской задачи при допущении о форме линии скольжения (разрушения): прямая, окружность, логарифмическая спираль, ломаная линия, искомая линия. В некоторых методах учитывается образование закола в верхней части откоса. Решение получается минимизацией коэффициента устойчивости K=R/F, по геометрическим параметрам виртуальных линий скольжения, где F – сумма сдвигающих, а R – сумма удерживающих усилий вдоль линии скольжения. В отличие от этих методов в методе Моргенштерна-Прайса [1] форма линии скольжения определяется конечными приращениями.

К.Терцаги в своей книге [2] предложил учитывать закол (вертикальную трещину) в верхней части откоса, который предшествует разрушению, инициируя затем потерю общей устойчивости.

Решения В.В. Соколовского [3] разработаны для оценки устойчивости однородных откосов в условиях предельного состояния, которое достигается сразу во всех точках области разрушения (статическое разрушение). Очевидно, что устойчивость при прогрессирующем (кинематическом) разрушении меньше, чем при статическом.

Ко второй группе относятся методы построения «равнопрочного» или «равноустойчивого» профиля откоса в условиях плоской задачи. Такой профиль возникает после обрушения ранее существовавшего массива грунта. Предполагается, что, сравнивая форму такого откоса с формой существующих откосов, можно оценить, насколько устойчивы последние.

Впервые такие откосы рассматривал В.В.Соколовский [3] (не называя их «равнопрочными» или «равноустойчивыми»), который показал, что после обрушения существующего откоса образуется новый откос, который имеет выполаживающуюся нижнюю часть и вертикальную и даже нависающую верхнюю часть — «закол», ведь связный грунт может работать на растяжение. Такие откосы мы часто видим по берегам рек и водоемов.

Н.Н.Маслов предложил и термин, и метод определения «равнопрочного» контура откоса [4], напоминающего по форме профили берега рек и водоемов, которые периодически оползают за счет подмыва водой.

Контур такого «равнопрочного» откоса по Н.Н.Маслову возникает за счет разрушения однородного полубесконечного тела с горизонтальной поверхностью в условиях плоской задачи. Но такое разрушение невозможно без значительного внешнего воздействия, что физически необъяснимо. Кроме того, в разрешающем уравнении для определения «равнопрочной» линии разрушения такого откоса автором была допущена ошибка: неучет наклона линии скольжения при учете вклада сцепления грунта. Тем не менее, «равнопрочные» откосы Н.Н.Маслова по форме очень похожи на откосы, образовавшиеся после оползней.

В [5] дана форма аналогичного, но уже «равноустойчивого» откоса, и такая же, как у откосов Соколовского. Но в формуле 6.53 на стр. 155 допущена опечатка, т.к. эта формула дает высоту устойчивого вертикального откоса, а не нагрузку, как указано в [5].

Метод конечных элементов (PLAXIS, MIDAS) дает возможность упругопластического расчета двухмерных и трехмерных откосов/склонов. Но в этих методах не учитывается образование сдвиговых разрывов грунта в «пластических» зонах. Поэтому результаты решения зависят от влияния размера ячейки сетки разбиения расчетной области на конечные элементы.

Итак, за прошедшие 100 лет начиная с появления первого метода расчета устойчивости откоса по гипотезе о круглоцилиндрической форме поверхности скольжения, предложенного в 1916 г. Р.Петерсоном (позднее «метод Шведского Геотехнического Общества»), разработано много таких методов, но, в основном, они отличаются лишь принятой формой линии скольжения, что не является существенным фактором. Гораздо важнее учет пространственного характера разрушения и пространственной неоднородности грунтовых массивов. Но именно это в данном методе не учитывается.

Направления новых исследований

Два примера недавних аварий (см. выше) указывают направления новых исследований.

Авария дамбы хвостохранилища (см. рис.1) произошла, на наш взгляд, из-за растяжения этой дамбы вдоль ее продольной оси, имеющей неправильную кольцевую форму, давлением жидких отходов изнутри наружу. Этот эффект был усилен прослойкой слабых ледниковых глин, залегающих ниже основания дамбы. В данном случае проектный расчет в условиях плоской задачи не представителен. Это типичная пространственная задача. Такой расчет можно сделать методом конечных элементов, по крайней мере для осесимметричного случая, но именно решение пространственной задачи отражает реальность. Как уже указано выше, в программах МКЭ грунтовая среда – всегда сплошная и не учитывает возникновение сдвиговых разрывов при достижении предельного состояния, что ведет к завышению прочности грунта на сдвиг.

Прогрессирующее разрушение откоса армогрунтовой насыпи (рис. 2, 3) продолжалось около двух лет. Не было аварийных разрушений, постепенно армогрунтовый откос пришел в непригодное состояние.

Это важный случай из практики, т.к. сейчас широко используются методы армирования откосов различными материалами и способами.

Уточнение параметрической формы линии скольжения при расчете устойчивости откоса не является существенным, т.к. это мало влияет на величину расчетного коэффициента устойчивости. Гораздо важнее учесть влияние возможной неравномерности свойств грунтов, слагающих откос, между точками измерения параметров грунта. При отсутствии таких данных параметры грунтов можно варьировать с помощью аппроксимирующей функции между точками измерения, оценивая получаемую разницу результатов расчета, например, в %. Для этого нужно выполнять не один, а серию расчетов, учитывающих разброс исходных данных.

Большинство существующих методов расчета армогрунтовых откосов предполагают замену арматуры на усилия, равные ее прочности на разрыв, и иногда на срез. А.Savitzky [6] предложил заменять арматуру на эквивалентное сцепление грунта, что сводит расчет устойчивости армогрунтового откоса к расчету откоса с увеличенным сцеплением (В.А.Барвашов [7]).

Автор надеется, что представленная информация инициирует дискуссию по рассмотренным вопросам.

ДЕ №3 / Оценка устойчивости склонов, откосов и массивных подпорных стенок

1.)При увеличении шероховатости задней грани подпорной стенки активное давление грунта на стенку…..

1.) увеличивается 2.) равняется природному

Читать еще:  Как покрасить откос водоэмульсионной краской

3.) уменьшается 4.) не изменяется

2.) Для повышения устойчивости откоса рекомендуется…..

1.) увеличить влажность грунта 2.) увеличить высоту откоса

3.) уменьшить крутизну откоса 4.) уменьшить модуль деформаций грунта

3.) Эпюра активного давления сыпучего грунта на подпорную стенку при горизонтальной поверхности засыпки и вертикальной гладкой стенке имеет вид ….

1.) прямоугольника 2.) трапеции

3.) круга 4.) треугольника

4.) При расчете коэффициента устойчивости откоса в методе круглоцилиндрических поверхностей скольжения определяется отношение моментов…………в массиве скольжения.

1.) сил сцепления и касательных 2.) сил трения и касательных

3.) веса грунта и касательных сил 4.) удерживающих и сдвигающих сил

5.) При определении активного давления грунта на подпорные стенки поверхность скольжения призмы обрушения принята….

1.) ступенчатой 2.) криволинейной

3.) горизонтальной 4.) плоской наклонной

6.) При неизменном значении угла внутреннего трения в грунте за стенкой и увеличении удельного сцепления в грунте пассивное давление грунта на стенку…..

1.) увеличивается 2.) не меняется

3.) равняется активному 4.) уменьшается

7.) Устойчивость откосов грунта считается обеспеченной, если коэффициент устойчивости больше или равен коэффициенту …..

1.) однородности 2.) фильтрации

3.) пористости 4.) нормативному

8.)При оценке устойчивости откоса связного грунта (j=0; с¹0) (см. рис.) к сдвигающим силам относят ….

1.) гидродинамическое давление воды

2.) силы удельного сцепления

3.) силы трения грунта

4.) касательную составляющуюдавленияот веса откоса

9.) С увеличением глубины заложения фундамента несущая способность грунта …

1.) увеличивается2.) уменьшается

3.) не меняется 4.) равняется природному напряжению на этой глубине

10.)Каким методом можно рассчитать устойчивость откоса?

1.) методом послойного суммирования

2.) методом угловых точек

3.) методом круглоциллиндрических поверхностей скольжения

4.) методом режущего кольца

5.) методом статических нагрузок на штамп

11.) Что препятствует оползанию откосов?

1.) наличие сцепления и коэффициента трения грунта откоса

2.) нагрузка по верхней брови откоса

3.) вес оползающего блока обрушения

4.) переувлажнение грунта откоса и утяжеление его

5.) повышение крутизны откоса

12.) Что препятствует оползанию откосов?

1.) наличие сцепления и коэффициента трения грунта откоса

2.) нагрузка по верхней брови откоса

3.) вес оползающего блока обрушения

4.) переувлажнение грунта откоса и утяжеление его

5.) повышение крутизны откоса

|следующая страница ==>
Тест по дисциплине «Механика грунтов»|ПОСТРОЕНИЕ ЦЕЛЕВОЙ МОДЕЛИ ОРГАНИЗАЦИИ («ДЕРЕВА ЦЕЛЕЙ»)

Дата добавления: 2014-07-10 ; просмотров: 515 ; Нарушение авторских прав

Устойчивость откосов и склонов

Автор работы: Пользователь скрыл имя, 12 Декабря 2011 в 21:08, доклад

Краткое описание

Откосом называется искусственно созданная поверхность, ограничивающая природный грунтовый массив, выемку или насыпь. Откосы образуются при возведении различного рода насыпей (дорожное полотно, дамбы, земляные плотины и. т.д.), выемок (котлованы, траншеи, каналы, карьеры и .п.) или при перепрофилировании территорий.

Вложенные файлы: 1 файл

УСТОЙЧИВОСТЬ ОТКОСОВ И СКЛОНОВ.docx

Реферат на тему:

«Устойчивость откосов и склонов»

г. Орел, 2011 г.

Устойчивость откосов и склонов

Общие положения

Откосом называется искусственно созданная поверхность, ограничивающая природный грунтовый массив, выемку или насыпь. Откосы образуются при возведении различного рода насыпей (дорожное полотно, дамбы, земляные плотины и. т.д.), выемок (котлованы, траншеи, каналы, карьеры и .п.) или при перепрофилировании территорий.

Склоном называется откос, образованный природным путем и ограничивающий массив грунта естественного сложения.

При неблагоприятном сочетании разнообразных факторов массив грунтов, ограниченный откосом или склоном, может перейти в неравновесное состояние и потерять устойчивость.

Основными причинами потери устойчивости откосов и склонов являются:

устройство недопустимо крутого откоса или подрезка склона, находящегося в состоянии, близком к предельному;

увеличение внешней нагрузки (возведение сооружений, складирование материалов на откосе или вблизи его бровки);

изменение внутренних сил (увеличение удельного веса грунта при возрастании его влажности или, напротив, влияние взвешивающего давления воды на грунты);

неправильное назначение расчетных характеристик прочности грунта или снижение его сопротивления сдвигу за счет, например повышения влажности;

проявление гидродинамического давления, сейсмических сил, различного рода динамических воздействий (движение транспорта, забивка свай и. т.п.).

Инженерные методы расчета устойчивости откосов и склонов

В проектной практике применяются инженерные методы расчета устойчивости, содержащие различного рода упрощающие предположения. Наиболее распространенный из них – метод круглоцилиндрических поверхностей скольжения, относящий к схеме плоской задачи.

Рис. 1. Схема к расчету устойчивости откосов методом круглоцилиндрических поверхностей скольжения: а) – расчетная схема; б) – определение положения наиболее опасной поверхности скольжения; 1, 2, … — номера элементов.

Этот метод был впервые применен К. Петерсоном в 1916 г. для расчета устойчивости откосов (тогда и долгое время назывался методом шведского геотехнического общества).

Рассмотрим широко используемую модификацию этого метода. Предположим, что потеря устойчивости откоса или склона, представленного на рис. 1, а, может произойти в результате вращения отсека грунтового массива относительно некоторого центра . Поверхность скольжения в этом случае будет представлена дугой окружности с радиусом r и центром в точке . Смещающийся массив рассматривается как недеформируемый отсек, все точки которого участвуют в общем движении. Коэффициент устойчивости принимается в виде

где и — моменты относительно центра вращения всех сил, соответственно удерживающих и смещающих отсек.

Для определения входящих в формулу (1) моментов отсек грунтового массива разбивается вертикальными линиями на отдельные элементы. Характер разбивки назначается с учетом неоднородности грунта отсека и профиля склона так, чтобы в пределах отрезка дуги скольжения основания каждого i-го элемента прочностные характеристики грунта j и с были постоянными. Вычисляются силы, действующие на каждый элемент: вес грунта в объеме элемента и равнодействующая нагрузки на его поверхность . При необходимости могут быть также учтены и другие воздействия (фильтрационные, сейсмические силы и т.д.). Равнодействующие сил считаются приложенными к основанию элемента и раскладываются на нормальную и касательную составляющие к дуге скольжения в точке их приложения. Тогда

Читать еще:  Смотреть под откос 2002 hd 720

Соответственно момент сил, вращающих отсек вокруг 0, определился как

где п – число элементов в отсеке.

Принимается, что удерживающие силы в пределах основания каждого элемента обусловливаются сопротивлением сдвигу за счет внутреннего трения и сцепления грунта. Тогда с учетом выражения для закона кулона можно записать

где — длина дуги основания i-го элемента, определяемая как . Здесь — ширина элемента)

Отсюда момент сил, удерживающих отсек, будет иметь вид

Учитывая формулу (1), окончательно получим

При устойчивость отсека массива грунта относительно выбранного центра вращения 0 считается обеспеченной. Основная сложность при практических расчетах заключается в том, что положение центра вращения 0 и выбор радиуса r, соответствующие наиболее опасному случаю, неизвестны. Поэтому обычно проводится серия таких расчетов при различных положениях центров вращения и значениях r. Чаще всего наиболее опасная поверхность скольжения проходит через нижнюю точку откоса или склона. Однако если в основании залегают слабые грунты с относительно низкими значениями прочностных характеристик j и с, то это условие может не выполняться.

Один из приемов нахождения наиболее опасного положения поверхности скольжения заключается в следующем. Задавясь координатами центров вращения 01, 02, …, 0n на некоторой прямой, определяют коэффициенты устойчивости для соответствующих поверхностей скольжения и строят эпюру значений этих коэффициентов (рис.1,б). Через точку 0min, соответствующую минимальному коэффициенту устойчивости, проводят по нормали второй отрезок прямой и, располагая на нем новые центры вращения , , …, вновь оценивают минимальное значение коэффициента устойчивости. Тогда и определит положение наиболее опасной поверхности скольжения. При устойчивость откоса или склона будет обеспечена.

Виды нарушения устойчивости откосов.

Откосы нередко подвержены деформированию в виде обрушений (рис. 2, а), оползней (см. рис. 2. б, в, г), осыпаний и оплываний (см. рис. 2 д).

Обрушения имеют место при потере массивом грунта опоры у подножия откоса. Оползни и оползания характеризуются перемещением некоторого объема грунта. Осыпание происходит при превышении силами сдвига сопротивления несвязного грунта на незакрепленной поверхности. Оплыванием (сплывом) называется постепенная деформация нижней части обводненного откоса или склона без образования четких поверхностей скольжения.

Основными причинами потери устойчивости откосов являются:

устройство недопустимо крутого откоса;

устранение естественной опоры массива грунта из-за разработки траншей, котлованов, подмыва откосов и т.д.;

увеличение внешней нагрузки на откос, например, возведение сооружений или складирование материалов на откосе или вблизи него;

снижение сцепления и трения грунта при его увлажнении, что возможно при повышении уровня подземных вод;

неправильное назначение расчетных характеристик прочности грунта;

влияние взвешивающего действия воды на грунты в основании;

динамические воздействия (движение транспорта, забивка свай и т.п.), проявление гидродинамического давления и сейсмических сил.

Нарушение устойчивости откосов часто является результатом нескольких причин, поэтому при изысканиях и проектировании необходимо оценивать вероятные изменения условий существования грунтов в откосах в течение всего периода их эксплуатации.

Рис. 2. Характерные виды деформаций откосов: а — обрушение; б — сползание; в — оползень; г — оползень с выпором; д — оплывание; 1 — плоскость обрушения; 2 — плоскость скольжения; 3 — трещина растяжения; 4 — выпор грунта; 5 — слабый прослоек; 6,7—установившийся и первоначальный уровни воды; 8 — поверхность оплывания; 9 — кривые депрессии

Различают три основных типа разрушения откоса (рис. 3):

разрушение передней части откоса (см. рис. 3,а). Для крутых склонов (α > 60°) характерно сползание с разрушением передней части откоса. Такое разрушение чаще всего возникает в вязких грунтах, обладающих адгезионной способностью и углом внутреннего трения;

разрушение нижней части откоса (см. рис. 3,6). На сравнительно пологих откосах разрушение происходит таким образом, что поверхность

скольжения соприкасается с глубоко расположенным твердым слоем. Такой тип разрушения чаще всего возникает в слабых глинистых грунтах, когда твердый слой расположен глубоко;

разрушение внутреннего участка откоса (см. рис. 3,в). Разрушение происходит таким образом, что край поверхности скольжения проходит выше передней части откоса. Такое разрушение также возникает в глинистых грунтах, когда твердый сдой находится сравнительно неглубоко.

Таким образом, основными причинами нарушения устойчивости земляных масс являются эрозионные процессы и нарушение равновесия. Эрозионные процессы в механике грунтов не рассматриваются, так как они более подробно рассмотрены в инженерной геологии.

Типы разрушения откосов: а — разрушение передней части откоса; б — разрушение нижней части откоса; в — разрушение внутреннего участка откоса

Мероприятия по повышению устойчивости откосов и склонов.

Одним из наиболее эффективных способов повышения устойчивости откосов и склонов является их выполаживание или создание уступчатого профиля с образованием горизонтальных площадок (берм) по высоте откоса. Однако это всегда связано с увеличением объемов земляных работ. При относительно небольшой высоте откосов может оказаться эффективной пригрузка подошвы в его низовой части или устройство подпорной стенки, поддерживающей откос. Положительную роль также играют закрепление поверхности откоса одерновкой, мощением камнем, укладкой бетонных или железобетонных плит.

Важнейшим мероприятием является регулирование гидрогеологического режима откоса или склона. С этой целью сток поверхностных вод перехватывается устройством нагорных канав, отведением воды с берм. Подземные воды, высачивающиеся на поверхности откоса или склона, перехватываются дренажными устройствами с отведением вод в специальную ливнесточную сеть.

При необходимости разрабатываются сложные конструктивные мероприятия типа прорезания потенциально неустойчивого массива грунтов системой забивных или набивных свай, вертикальных шахт и горизонтальных штолен, заполненных бетоном и входящих в подстилающие неподвижные части массива. Используется также анкерное закрепление неустойчивых объемов грунта, часто во взаимодействии с подпорными стенками или свайными конструкциями.

    1. Цытович Н. А. «Механика грунтов. Краткий курс», / Высш. шк. , 1983.

    1. Малышев М. В. «Механика грунтов основания и фундаменты».

    1. Маслов Н. Н. «Основы механики грунтов и инженерной геологии». / Учебник для вузов. — М., Высшая школа, 1968
голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector