Dessadecor-nn.ru

Журнал Dessadecor-NN
3 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Шахунянца метод расчета откосов

Методы расчета устойчивости склонов.

Сравнительно-геологический метод оценки современной устойчивости склона и прогноза его дальнейшего развития и метод природных аналогов.

Расчетные методы основанные на анализе напряженного состояния массива пород: 1) в пределах всего склона и 2) только вдоль известной или предполагаемой поверхности скольжения.

Методы экспериментального моделирования: на поляризационно-оптических и эквивалентных материалах.

Приближенные методы основаны на расчетах предельного равновесия масс горных пород на склонах и в откосах по поверхностям скольжения. Такие расчеты включают в себя:

1) оценку устойчивости склонов и откосов, сложенных неоднородными породами, и 2) оценку устойчивости склонов и откосов, сложенных однородными породами. Из этой группы методов большей известностью пользуются методы, предложенные Феллениусом, Терцаги, Вернацким, Тейлором, Фрелихом, Чугаевым, Гольдштейном, Шахунянцем, Масловым и Фисенко.

Метод расчета устойчивости склонов и откосов, сложенных неоднородными горными породами. Этот метод применим для склонов и откосов, в геологическом строении которых имеются явные границы раздела в напластовании горных пород, ориентированные неблагоприятно, т.е. наклоненные к основанию склона или образованные наклонными трещинами.

Расчетная схема склона или откоса при использовании этого метода аналогична схеме расчета устойчивости оползня, имеющего наклонную поверхность скольжения с тем отличием, что на расчетном геологическом разрезе намечают не выявленную, а возможную или возможные поверхности скольжения. В остальном весь расчет устойчивости склона или откоса производят так же, как и при расчете устойчивости оползня. Для этого подготавливают:

1) обоснованную расчетную схему — детальный геологический разрез;

2) обоснованные расчетные данные;

3) обоснование момента, для которого производится расчет, т.е. наиболее неблагоприятное сочетание силовых воздействий.

Метод расчета устойчивости склонов и откосов, сложенных однородными горными породами. В однородных изотропных породах, не имеющих каких-либо видимых границ разделов, ориентированных наклонно к основанию склона или откоса, поверхность скольжения обычно имеет вогнутую, условно круглоцилиндрическую форму. Поэтому расчет устойчивости в таких случаях обычно называют методом расчета по кругло-цилиндрической поверхности скольжения. Наиболее вероятными местами выхода этой поверхности скольжения на поверхность земли обычно являются бровка склона или откоса или часть их, приближающаяся к бровке, и их основания.

При расчете устойчивости таких склонов и откосов на геологическом разрезе радиусом произвольной длины намечают несколько поверхностей скольжения и по каждой из них проверяют устойчивость масс горных пород, ограниченных поверхностями скольжения и рельефа склона. Склон или откос можно считать устойчивым, если по каждой намеченной поверхности скольжения коэффициент устойчивости будет больше единицы.

Сущность расчета устойчивости склонов и откосов, сложенных однородными породами, состоит в следующем. Предполагается, что оползание пород может произойти по одной из намеченных поверхностей. Предельное равновесие масс горных пород по этой поверхности определяется равенством моментов действующих сил относительно центра вращения. Соответственно коэффициент устойчивости откоса в этом случае должен быть равен единице. Момент сил вращения, т.е. момент силы тяжести, равен произведению составляющей силы тяжести на плечо, равное радиусу. Так как угол наклона поверхности скольжения в разных ее точках неодинаков, соответственно и составляющая силы тяжести в этих точках изменяется. Поэтому момент сил вращения определяется как произведение суммы составляющих силы тяжести на радиус.

Момент удерживающих сил равен произведению суммы сил сопротивления сдвигу на плечо.

Поэтому при предельном равновесии коэффициент устойчивости откоса:

Метод расчета устойчивости склонов и откосов ВНИМИ. Этот метод разработан Г.Л. Фисенко и относится к числу сравнительно новых инженерных методов. Его основой является определенный порядок построения наиболее вероятной поверхности скольжения, при определении формы и расположения которой учитываются следующие основные положения теории предельного равновесия сыпучей среды:

1. Нарушение устойчивости склона или откоса происходит в виде оползания части слагающих их горных пород по поверхности скольжения, имеющей в однородных породах форму, близкую к круглоцилиндрической.

2. Элементарные площадки скольжения в однородных горных породах могут возникать начиная лишь с глубины, где напряжения будут не менее: у1=2ctg (45°-ц/2).

3. Вдали от бровки склона или откоса ось главных напряжений совпадает с вертикалью, при приближении к их поверхности изменяет наклон в сторону склона (откоса), а на плоских и вогнутых поверхностях склонов и откосов совпадает с ними.

4. С изменением направления главных напряжений изменяется и наклон площадок скольжения от угла (45° — ф/2) к вертикали в некотором удалении от откоса до угла (45° — ф/2) к поверхности откоса при его пересечении.

5. В однородных горных породах площадки скольжения возникают на глубине, соответствующей максимально возможной высоте вертикального откоса.

Метод Н.Н. Маслова оценки устойчивости склонов и откосов. Это один из широко известных приближенных методов, названный автором методом равнопрочного откоса или методом Fp. Равнопрочным принято называть такой откос, у которого в любом горизонтальном сечении обеспечена устойчивость слагающих его горных пород.

Зная угол сопротивления сдвигу горных пород каждого горизонта, слагающих склон или откос, и учитывая распределение напряжений от собственного веса пород, можно наметить очертание устойчивого склона или откоса.

Дата добавления: 2016-12-27 ; просмотров: 3453 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

ИНЖЕНЕРНЫЕ МЕТОДЫ РАСЧЕТА УСТОЙЧИВОСТИ ОТКОСОВ

Методы расчета устойчивости откосов позволяют в количественной форме установить влияние различных процессов на состояние массива горных пород и оценить эффективность ме­роприятий по снижению их негативной роли.

Классификация составлена по схеме: класс методов — группа методов — основной метод (методы) группы — расчетные способы и схемы, использующие основной метод.

Основным классификационным принципом для выделения классов методов принято определение параметров устойчивого откоса.

Выделено пять классов методов:

1. Класс А (основной метод В.В. Соколовского, расчетные способы и схемы И.С. Мухина и А.И. Срагович, A.M. Сенкова, Г.Л. Фисенко, В.Т. Сапожникова, В.Т. Пушкарева, Ю.Н. Малюшицкого, С.С. Голушкевича) — методы, предусматриваю­щие построение контура откоса, являющегося внешней границей зоны, во всех точках которой удовлетворяется условие пре­дельного равновесия.

В классе А выделены две группы методов:

в первой — используется численное,

во второй — графическое интегрирование дифференциальных уравнений предельного напряженного состояния.

2. Класс Б (Н.Н. Маслова» М.Н. Троицкой) — методы, предусматривающие построение контура откоса, вдоль которого удовлетворяется равенство угла наклона касательной углу сопротивления сдвигу.

К классу Б отнесены два метода, характеризующиеся разбивкой откоса на горизонтальные слои и определением устойчивого угла наклона каждого слоя с учетом массы вышележащих пород.

3. Класс В — методы, предусматривающие построение в массиве откоса поверхности скольжения, вдоль которой удовлетворяется условие предельного равновесия.

В классе В выделено пять групп методов:

Читать еще:  Как правильно отрезать откос

— в первой группе расчет устойчивости откоса производится на основе плоской поверхности скольжения (Л.Н. Бернацкого, П.Н. Цымбаревича),

— во второй — круглоцилиндрической (В. Феллениуса» Д. Тей­лора, Н. Янбу, М.Н. Гольдштейна, О. Фрелиха, А. Како, Й.В. Фе­дорова),

— в третьей — логарифмической спирали (Г. Крея — К. Терцаги, P.P. Чугаева, А, Бишопа, Г.М. Шахунянца, Е. Спенсера, Н. Моргенштерна — В. Прайса),

— в четвертой — поверхности скольжения сложной криволинейной формы (Л. Рендулика» Н.П. Пузыревского — П.И. Кожевникова, Ю.С. Козлова — В.П. Будкова, Г.Л. Фисенко, Л.В. Савкова, А.Г. Дорфмана, конечных элементов),

— в пятой — поверхности скольжения ломаной формы (А.П. Ясюнас, Н.Н. Маслова, P.P. Чугаева).

Во второй группе методов выделены две подгруппы:

в первой учитывается условие равновесия откоса,

во второй — условие равновесия отдельных вертикальных отсеков.

4. Класс Г (методы ВНИМИ — Г.Л. Фисенко, Н.Н. Кувае-ва,Э.Л. Галустьяна, ГИГХС — М.Е. Певзнера; Э.Г. Газиева,В.И, Речицкого, Э.А. Фрейберга — Гидропроекта, Л.В. Савкова — ВНИИЦветмета, П.Н. Панюкова — МГИ, И.И. Попова и Р.П. Окатова — КарПи) — методы, предусматривающие построение в массиве поверхности скольжения, вдоль которой удовлетворяется условие специального предельного равновесия.

Класс Г включает в себя методы, в которых определение сдвигающих и удерживающих сил производится с учетом прочностных характеристик, действующих по поверхности ослабления откоса. В этот класс входит также группа методов, учитывающих объемный характер процесса разрушения и форму призмы обрушения.

5. Класс Д — методы, предусматривающие вероятностную оценку устойчивости откосов на основе статистических оценок определяющих факторов.

Многообразие геологических и гидрогеологических особенностей разрабатываемых месторождений исключает существование универсального решения, пригодного для конкретных условий.

Для практических расчетов используются инженерные методы, основанные на установлении условий предельного равновесия по поверхностям скольжения, положение которых оп­ределяется путем последовательных приближений.

К числу инженерных относятся методы алгебраического суммирования сил по круглоцилиндрическим и монотонным криволинейным поверхностям и многоугольника сил. Используется также комбинации этих методов и методов предельного напряженного состояния.

Большая группа методов основана на предположении круглоцилиндрической поверхности скольжения.

Круглоцилиндрическая или монотонная криволинейная поверхности скольжения обычно образуются в массивах, сложенных однородными породами, при горизонтальном залегании слоев с близкими по значению прочностными характеристиками, а также при обратном падении слоев в сторону массива.

Принимается, что ограниченный поверхностью скольжения массив представляет собой «жесткий клин», а ожидаемое смещение массива рассматривается как вращение «жесткого клина» вокруг оси, параллельной откосу и служащей осью кругового цилиндра (рис.).

В плоской задаче круглоцилиндрическая поверхность скольжения превращается в дугу, а ось этой поверхности — в точку.

Момент вращения сил МС, стремящихся повернуть массив смещающихся пород вокруг точки О, определяется массой этого клина Р и горизонтальным расстоянием А между центром тяжести клина (точкой приложения массы клина Р) и центром вращения (точкой О), т. е.

Для определения момента вращения призму возможного обрушения разбивают на ряд вертикальных блоков одинаковой ширины.

hi — высота i-го блока, м;

bi -ширина элементарного блока, м.

Момент вращения, создаваемый элементарным блоком:

ai — горизонтальное расстояние от центра приложения массы элементарного блока до оси вращения (точки О).

Ti=Pisinαi — касательная составляющая массы отдельного блока, действующую по поверхности скольжения в пределах данного блока

Момент вращения сил

МС=R

где n — число элементарных блоков.

Силами, удерживающими призму возможного обрушения от смещения, являются силы трения по поверхности скольжения и силы сцепления.

Момент вращения сил, удерживающих массив от смещения

Мy=Rtgj cosαi+Rc

где R -радиус наиболее опасной поверхности скольжения, м.

В состоянии предельного равновесия по принятой поверхности скольжения выполняется равенство моментов удерживающих и сдвигающих сил:

Коэффициент запаса устойчивости

η=

Если η>1, массив находится в допредельном равновесном состоянии, удерживающие силы будут превосходить сдвигающие.

Упрощенный способ построения круглоцилиндрической поверхности скольжения (рис.).

Рис. Схема упрощенного способа построения круглоцилиндрической поверхности скольжения

Недостатки метода круглоцилиндрической поверхности скольжения — коэффициент запаса меньше фактического. Степень этого несоответствия зависит от высоты откоса, его угла и углов внутреннего трения пород и может колебаться от 3 до 20 %.

При высоте откосов до 100 м и небольших значениях углов трения пород (j

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ — конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой.

Метод расчета устойчивости путем снижения прочностных характеристик

Введение

В строительной практике для определения устойчивости грунтового сооружения или склона, как правило, используются методы предельного равновесия, разработанные такими авторами как Шахунянц, Маслов, Терцаги, Бишоп, Моргенштерн, Спенсер и многими другими.

В расчетной модели принимается ряд допущений [1]:

— используется гипотеза затвердевшего тела;

— допускается определенная форма поверхности скольжения;

— напряжения заменяются силами;

— принимаются допущения о давлении грунтовых вод и сейсмичности.

Общая последовательность применения методов предельного равновесия такова, что сначала задаются поверхностью скольжения, после чего путем итераций определяется положение критической поверхности скольжения с минимальным значением коэффициента устойчивости. Как следует из приведенной последовательности, недостатком этого подхода является то, что поверхность скольжения задается до начала расчета. Как правило, решение о возможной форме поверхности скольжения принимается на основе расчетов по круглоцилиндрическим, или по полигональным (предопределенным) поверхностям скольжения [2], однако существуют такие программы, в которых поверхность скольжения может быть комбинированной или задана логарифмической спиралью (GenID32, Slide).

Таким образом, исходя из необходимости охватить как можно больше встречающихся на практике случаев (разнородное геологическое строение, наличие грунтовых вод, сейсмические воздействия и пр.) методы предельного равновесия имеют много допущений и упрощений, но при этом позволяют получать достаточные для практики результаты в случае наличия инженерно-геологических условий средней степени сложности.

Сложности использования методов предельного равновесия

Существует большое количество программ, реализующих методы предельного равновесия (GGU Stability; GeoStab; GeoStudio; SlopeStability; Slide; DCGeotex; MRE; MacStars 2000, GenID32 и др.), призванных облегчить работу проектировщика-расчетчика. Проблемами использования программ является отсутствие доступной для проектировщика информации и применимости того или иного метода (как правило зарубежного), отсутствие в нормативных документах четкого указания на применение конкретного метода расчета и разница (в некоторых случаях существенная) между заложенными в программу методами расчета устойчивости.

Известный специалист по расчетам устойчивости в области гидротехнического строительства Р.Р. Чугаев, анализируя большое разнообразие методов расчета устойчивости, выделил всего четыре способа, отличающиеся своей оригинальной системой сил, действующих на отсеки (это связано с невозможностью рассчитать статически неопределимую систему, образованную рядом твердых отсеков-столбиков, стоящих на дуге обрушения, пользуясь только тремя уравнениями статики): Свена-Гультена, Феллениуса, Крея, Терцаги. Другие известные способы (Бишопа, Маслова, Шахунянца и др.) касаются главным образом только техники расчетов или учета тех или иных дополнительных усложняющих элементов, при этом такого рода предложения не затрагивают существо самих силовых схем, положенных в основу расчета [3].

Читать еще:  Как посчитать откосы отсыпки

Методы расчета делятся по механизмам: удовлетворяющие общему равновесию моментов (Феллениуса, Бишопа), методы равновесия сил (Шахунянца, Крея, Маслова-Берера) и методы равновесия моментов и сил (Янбу, Моргенштейна и Прайса, Спенсера).

Еще одним существенным различием методов расчета устойчивости является учет сил. Можно выделить три категории методов (рис. 1):

— учитывающие только основные силы;

— учитывающие горизонтальные силы взаимодействия отсеков;

— учитывающие вертикальные и горизонтальные силы взаимодействия между отсеками.

Рис. 1 Схемы учета сил: а) только основные; б) основные и горизонтальные;
в) основные, горизонтальные и вертикальные.

Если судить по критерию максимального учета сил, воздействующих на отсек, то такие методы как Н. Моргенштейна и В. Прайса, а также
Е. Спенсера являются наиболее достоверными.

Общая рекомендация по оценке результатов расчета такова: методы
Н. Моргенштейна, В. Прайса и Е. Спенсера, а также метод GLE (General Limit Equilibrium) дают наиболее точный результат, их следует сравнивать с коэффициентом запаса устойчивости; методы Г. М. Шахунянца, А. Бишопа, Н. Янбу считаются консервативными, следовательно, занижают устойчивость и могут применяться для проверки устойчивости относительно состояния предельного равновесия (Куст=1). Методы В. Феллениуса и ему подобные в современных мощных программах по расчету устойчивости добавлены только лишь потому, что многим пользователям они хорошо знакомы, но результаты имеют очень большое занижение устойчивости, а часто не являются корректными. Эта рекомендация действительна при полных и достоверных исходных данных! В любом случае все решает опыт и интуиция расчетчика.

По опыту использования различных программ можно сказать, что в случаях расчетов сложных оползневых склонов, чтобы выявить наихудшее положение линии поверхности скольжения, требуется выполнение расчетов по различным поверхностям скольжения и с заданием разного рода ограничений, что требует определенного навыка и опыта. А в случаях, казалось бы, более простых, как например армирование высокой насыпи, возникают сложности с определением окончательного коэффициента устойчивости, поскольку большая часть методов свидетельствует об устойчивом состоянии, а считающийся в нашей стране наиболее достоверным метод проф. Шахунянца показывает, что устойчивость недостаточна.

Здесь следует понимать, что ни один из авторов методов расчета устойчивости не предполагал в своем методе наличие геосинтетических прослоек [4,5].

Метод снижения прочности

Способом определения устойчивости, лишенным описанных недостатков, является метод снижения прочности. Во-первых, согласно положенному в основу принципу, поверхность скольжения определяется автоматически в ходе расчета, а во-вторых, учет геосинтетических прослоек в программах, использующих этот метод, на наш взгляд более совершенен [4,5].

Из положений механики грунтов известно, что напряженное состояние в какой-либо точке грунта рассматривается как предельное в том случае, когда незначительное добавочное воздействие нарушает равновесие и приводит грунт в неустойчивое состояние. Разрушение грунта происходит в результате преодоления внутренних сил трения и сцепления между частицами по определенным поверхностям скольжения.

В общем виде устойчивость сооружения определяется коэффициентом безопасности, представляющим собой отношение максимально возможной прочности грунта τпред к минимальному значению, необходимому для обеспечения равновесия τдейств:

(1)

Если формулу (1) представить в виде стандартного условия Кулона, то она примет вид:

Где с’ и j’ – исходные параметры прочности и sn – фактическое нормальное напряжение; сr и jr – параметры прочности, сниженные в ходе расчета до минимальных значений, достаточных для поддержания равновесия.

Метод снижения прочности (SRM – shear reduction method) по принципу расчета схож с методом Р.Р. Чугаева, известным в гидротехническом строительстве [3]. Метод снижения прочности реализован в программах, работающих на основе метода конечных элементов и конечных разностей (Plaxis, GEO5, Phase2, FLAC). Прогноз разрушения осуществляется путем одновременного понижения обоих показателей сдвиговой прочности:

Где Куст – коэффициент снижения прочности, соответствующий коэффициенту устойчивости в момент разрушения.

Последовательность расчета следующая: коэффициенту снижения прочности (Куст) присваивается значение Куст=1. В ходе расчета Куст увеличивается, при этом сопротивление сдвигу и деформация оцениваются на каждом этапе до наступления разрушения. Результаты вычислений приводятся в виде графиков, на которых показано влияние коэффициента снижения прочности (Куст) на смещение контрольной точки (узла сетки конечных элементов). Критерий разрушения модели определяется условием Кулона-Мора. Если в результате конечно-элементного расчета будет получено решение для последнего устойчивого состояния откоса, то график расчетов примет горизонтальное положение и коэффициент снижения прочности будет соответствовать коэффициенту устойчивости Куст. Поверхность скольжения при использовании МКЭ формируется во время расчета.

Существенным преимуществом метода снижения прочности по сравнению с методами предельного равновесия является то, что поверхность скольжения и коэффициент устойчивости определяются одновременно в процессе расчета.

Применение численных методов расчета (МКЭ) регламентируется такими документами, как: СП 16.13330.2012 «Инженерная защита территорий, зданий и сооружений от опасных геологических процессов. Основные положения» (Актуализированная редакция СНиП 22-02-2003) и ОДМ 218.2.006-2010 Рекомендации по расчету устойчивости оползнеопасных склонов (откосов) и определению оползневых давлений на инженерные сооружения автомобильных дорог. ОДМ 218.001-2009 «Рекомендации по проектированию и строительству водопропускных сооружений из металлических гофрированных структур на автомобильных дорогах общего пользования с учетом региональных условий (дорожно-климатических зон)».

Проведенные анализы сопоставления расчетов устойчивости по методам предельного равновесия и снижения прочности для большого количества параметров насыпей с различной конфигурацией показали, что такие методы, как Тейлора (с расчетом по недренированной прочности cu), Бишопа, Моргенштейна (прочность задалась эффективными характеристиками с’ и φ’), которые можно считать проверенными временем, не имеют большого расхождения с расчетами по методу снижения прочности. Расхождения в несколько процентов связаны с тем, что МПР используют исключительно круглоцилиндрические поверхности скольжения, а метод снижения прочности не имеет никаких ограничений по геометрии механизма разрушения [2].

Еще одним существенным преимуществом использования метода снижения прочности является его единство с другими возможностями численного моделирования. Это обстоятельство позволяет принять в расчет погруженную часть насыпи при расчете устойчивости на слабых (сжимаемых) грунтах, с учетом процессов консолидации основания и его упрочнения, чего никаким образом нельзя сделать при расчете методами предельного равновесия. А также выполнять расчет устойчивости с учетом избыточного порового давления, формирующего «отпор» в центральной части насыпи и способствующего снижению устойчивости откосных частей, где эффективные давления максимальные (рис. 2). При таком расчете устойчивость насыпей на водонасыщенных глинистых грунтах оказывается значительно ниже.

Читать еще:  Облицовка откосов пластиком расценка фер

Рис. 2 Схема к расчету устойчивости с учетом избыточного порового давления

Использование численного моделирования и расчет устойчивости по методу снижения прочности позволяет решать задачу по определению длительной прочности геосинтетических материалов. При расчетах по МПР (упруго-пластический расчет) необходимо задаться длительной прочностью R мпр длит (рис. 3), определяемой по [6,7], и произвести оценку устойчивости, после чего будет известна кратковременная (номинальная) прочность R мпр кр. При численном моделировании (консолидационный расчет) с учетом «отпора» сил избыточного порового давления для обеспечения устойчивости сооружения потребуется расчетная длительная прочность геоматериала R конс длит> R мпр длит, которая после завершения процесса консолидации снизится. Учитывая, что под длительной прочностью подразумевается остаточная прочность в расчете на 120 лет, в результате численного расчета получается, что кратковременная (номинальная) прочность, полученная с учетом процессов консолидации, меньше, чем полученная при расчетах методами предельного равновесия R конс кр мпр кр.

Рис. 3 График определения длительной прочности геосинтетического материала

Заключение

Использование численного моделирования позволяет решать сложные геотехнические задачи, связанные с индивидуальным проектированием, которые достаточно часто встают перед проектными организациями. Положенный в основу программ численного моделирования метод расчета устойчивости путем снижения прочностных характеристик имеет ряд преимуществ перед традиционно используемыми методами расчета устойчивости на основе уравнений предельного равновесия. Для простых случаев все методы дают одинаковый результат, однако термин «индивидуальное проектирование» подразумевает сложные инженерно-геологические условия, что требует применения более точных методов расчета.

Сложность освоения программ численного моделирования, отсутствие соответствующих предметов у студентов строительных вузов, а также ограниченное количество литературы по этому вопросу накладывает ограничения на использование этих методов. Однако в мировой практике использование геотехнических программных комплексов считается современным и актуальным. В то же время не стоит отказываться от традиционных методов предельного равновесия для проверки полученных результатов, поскольку численное моделирование ввиду сложности требует серьезного опыта и интуиции.

Библиографический список

1. Рекомендации по выбору методов расчета коэффициента устойчивости склона и оползневого давления М.:ЦБНТИ, 1986.

2. W.F. Van Impe, R.D. Verastegui Flores Underwater Embankments on Soft Soil: A Case History. University of Ghent, Belgium.

3. Чугаев Р.Р. Расчёт устойчивости земляных откосов и бетонных плотин на нескальном основании по методу круглоцилиндрических поверхностей обрушения. М.: Госэнергоиздат, 1963. — 144 с.

4. Вавринюк Т.С., Федоренко Е.В. Расчеты устойчивости земляного полотна с геосинтетическими материалами. Журнал «Красная линия», выпуск Дороги №69 май 2013.

5. Рекомендации по применению геосинтетических материалов в конструкциях промысловых дорог. СПб.:Миаком, 2013.

6. ОДМ 218.5.003-2010 Рекомендации по применению геосинтетических материалов при строительстве и ремонте автомобильных дорог.

7. Пособие по проектированию земляного полотна автомобильных дорог на слабых грунтах. М., 2004.

8. Геотехника и геосинтетика в вопросах и ответах. Справочное пособие. 2016

9. Практикум по Plaxis. Часть 1. Виртуальная лаборатория Soil Test. 2016 (электронное издание)

10. Практикум по Plaxis. Часть 2. Напряжения. Прочность/ 2016 (электронное издание)

Программа — Расчет устойчивости склона по методу Шахунянца Г.М

Выполняет расчет устойчивости склона по методу Шахунянца Г. М.
Автор программы «Opolz» (с) Шабарин В. Н. Программа распространяется свободно. Сведений о сертификации нет. Мною не тестировалась, поэтому корректность вычислений определяйте сами.
Несколько общих рекомендаций и пояснений по пользованию программой от меня (в зип-архиве нет руководства, хелпа, так что это описание сохраните для своей работы с программой):

«гаммаW» — удельный вес воды = 1
«Куз» — заданный коэффициет устойчивости (Кst) для расчета оползневого давления на удерживающую конструкцию.
Куз (Кst) должно при основных сочетаниях нагрузок на оползневых и оползнеопасных склонах составлять соответственно для защитных сооружений первой степени ответственности: 1,35 и 1,25; второй: 1,3 и 1,2; третьей: 1,25 и 1,15; четвертой: 1,2 и 1,1
При особых сочетаниях нагрузок: для первой: 1,3 и 1,2; второй: 1,25 и 1,15; третьей- 1,2 и 1,1; четвертой 1,15 и 1,05.
«Мю» — сейсмическая сила (учёт сейсмических воздействий производится введением в формулу коэффициента динамической сейсмичности (?) значения которого принимают для расчётной сейсмичности 6 баллов ?=0,0; 7 баллов ?=0,025; 8 баллов ?=0,05; 9 баллов ?=0,1
При расчетах искуственных откосов рекомендуется увеличить ? в 1,5 раза).
Укажите количество расчетных отсеков.
«Альфа» — угол наклона поверхности скольжения к горизонту, ?, град.
«С» — удельное сцепление грунта по поверхности скольжения, тс/м2 (1кг/см2=10 тс/м 2 )
«Фи» — Угол внутреннего трения грунта по поверхности скольжения, ?, град.
«Гамма» — средний объемный вес грунта (с учетом водонасыщенной части расчетного отсека), т/м3
«Нср» — средняя высота расчётного отсека от поверхности до плоскости скольжения, H, м.
«А» — длина подошвы расчётного отсека L, м. (хотя я неуверен? ) или может быть ширина расчётного отсека? (длина проекции следа отсека на горизонтальную плоскость = L*cos?), a, м
«h» — средняя мощность водонасыщенного грунта в отсеке, h, м (если воды нет h=0)
«Бетта» — Угол депрессионной кривой к горизонту в расчётном отсеке, ?ф, град. (воды нет — не проставлять)
«Рдоп» — Пригрузка расчётного отсека зданием, сооружением, Pp, т/м2

«Еоползн» — Оползневые давления, т/м, показывают возможное давление на предполагаемую удерживающую конструкцию, обеспечивающую в данном сечении склона коэффициент устойчивости не ниже заданного (Кst). В расчетах принято допущение о распределении оползневого давления по высоте сечения склона в виде треугольной эпюры, а реакция удерживающего сооружения направлена по горизонтали. Таким образом, определяется горизонтальная составляющая оплзневого давления.

«Еотп» — Давление отпора, т/м — учет контрфорсного действия нижележащих отсеков.

При отсутствии грунтовых вод заполнить таблицу до столбца h включительно (все h=0) иначе расчет не активируется, при наличии грунтовых вод заполнить столбцы «h», «Бетта».

Условные допущения в расчётной модели:
используется гипотеза затвердевшего тела (призма возможного смещения рассматривается в виде затвердевшего клина); рассматривается узкая полоса склона шириной 1 м; условия ее работы сохраняются для всего склона; допускается определенная форма поверхности скольжения; «

При вводе числовых значений следите за разделителем — должна быть «точка», «запятая» — ошибка! Будте внимательны при заполнении исходных данных.
В правом верхнем углу окна программы при запуске появляются цифры с запятой-разделителем — это ошибка, исправьте!

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector