Dessadecor-nn.ru

Журнал Dessadecor-NN
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Заложение откоса траншеи это

144329 (Проектирование котлована)

Описание файла

Документ из архива «Проектирование котлована», который расположен в категории «курсовые работы». Всё это находится в предмете «строительство» из раздела «Студенческие работы», которые можно найти в файловом архиве Студент. Не смотря на прямую связь этого архива с Студент, его также можно найти и в других разделах. Архив можно найти в разделе «курсовые/домашние работы», в предмете «строительство» в общих файлах.

Онлайн просмотр документа «144329»

Текст из документа «144329»

Определение размеров котлована для здания

Расчет объемов грунта срезаемого растительного слоя при сооружении котлована

Расчет объемов грунта разрабатываемого в котловане экскаватором

Расчет объемов грунта при зачистке дна котлована

Расчет объемов грунта при выполнении траншей для въезда в котлован

Расчет объемов земельных работ по обратной засыпке выемок сбоку от периметра фундаментов

Составление калькуляции затрат труда

1. Проектирование котлована

1.1 Определение размеров котлована для здания

При проектировании котлованов, их размеры, определяют исходя из общих размеров (L и B) на плане (чертеже), требуемой глубины его заложения (Н), крутизны откосов (1 / m), принятых для выполнения производственных процессов, условий их безопасного выполнения, а также условий необходимых для обеспечения выполнения дальнейших работ: установка опалубки при изготовлении ростверка, гидроизоляция стен подпала, установка лесов или подмостей и т.д.

Для создания безопасных условий труда в котловане и предотвращения обрушения стенок котлована, его устраивают с откосами, или выполняют их крепление. Крутизна откоса — отношение его высоты к заложению (1 / m = Н / а). Крутизна откосов (1/m) зависит от вида грунта, глубины котлована ( Н ) и характеризуется коэффициентом заложения откоса (m), численные значения которого приведены в таблице 3.

Указанные параметры связаны между собой тождеством

1/m – крутизна (уклон) откоса

Н – высота откоса в котловане (глубина котлована), м

m – коэффициент заложения откоса котлована

а – заложение откоса, м.

Определяем заложение откоса путем преобразования тождества (1) в формулу

При глубине котлована Н=2 метра в грунте глина будет иметь коэффициент заложения откоса m = 0,25, и откос должен иметь угол предельного равновесия а, при основании откосов котлована не более 76°.

По конфигурации здания в плане и его размеров определяем необходимые размеры котлована. Длина (Lк, м) котлована по дну (по низу) определяется по формуле:

L – длина здания между координационных осей здания (пролет здания), м

с – расстояние, от боковых поверхностей ростверка до координационных осей здания, м

d – расстояние, от внешней наружной плоскости ростверка до подошвы откоса, м.

Lк = 45 + 2(0,3 + 0,7) = 47 м

Ширина котлована по дну (Вк, м), определяется по формуле:

В – размер по ширине здания между координационными осями здания, м

с – расстояние, от боковых поверхностей ростверка до координационных осей здания, м

d – расстояние, от внешней наружной плоскости ростверка до подошвы откоса, м.

Вк = 30 + 2(0,3 + 0,7) = 32 м

Длину котлована по верху (LВк, м), определяется по формуле:

Lк – длина котлована по низу, м

а – заложение откоса котлована, м.

Используя формулу (2) преобразуем формулу (5), а после преобразования получаем формулу:

LВк = 47 + 2(2 * 0,25) = 48м

Ширину котлована по верху (ВВк, м) определяют по формуле:

ВВк = Вк + 2а = Вк + 2(Н *m)(7)

m – коэффициент заложения откоса котлована.

ВВк = 32 + 2(2 * 0,25) = 34м

Вычерчиваем план котлована, сечения 1 – 1 и 2 – 2 по котловану и проставляем все условные обозначения с числовыми составляющими (рис. 2)

1.2 Расчет объемов грунта срезаемого растительного слоя при сооружении котлована

Плодородный грунт растительного слоя при строительстве здания должен быть сохранен, поэтому его срезают и вывозят или складируют для последующего использования при благоустройстве территории по завершению строительства.

Объем грунта подлежащий срезке срезают бульдозером с последующей погрузкой экскаватором или фронтальным погрузчиком в транспортные средства.

Объем (Vc, м) срезаемого грунта определяют по формуле:

VКс – объем срезаемого грунта в пределах котлована, м 3

VРс – объем срезаемого грунта в пределах рабочей зоны, м 3

Слагаемые формулы (8) определяют по формуле:

VКс = ВВк * LВк * hc, (10)

hc – толщина срезаемого слоя, м.

VКс = 34 * 48 * 0,15 = 245 м 3

F – площадь рабочей зоны, прилегающей к котловану по его периметру, м 2.

F = 45 * 15 = 675 м2

VРс = 675 * 0,15 = 101 м3

1.3 Расчет объемов грунта разрабатываемого в котловане экскаватором

Объем работ (Vэ, м3) выполняют экскаватором и определяют по формуле:

Vэ = (F1 + F2) / 2(H – hc – δ)(12)

F1 – площадь котлована по дну, м2

F2 – площадь котлована поверху, м2

Н – глубина котлована разрабатываемого экскаватором, м

δ = 0,15 величина недобора, м.

F1 = 47 * 32 = 1504 м2

F2 = 48 * 34 = 1632 м2

Vэ = (1504 + 1632) / 2 (2 – 0,15 – 0,15) = 922 м3

1.4. Расчет объемов грунта при зачистке дна котлована

Объем грунта образующийся при зачистке дна котлована ( VКэ, м3) называют грунтом недобора и определяют по формуле:

VКэ = Lк * Вк * δ(15)

VКэ = 47 * 32 * 0,15 = 226 м3

1.5 Расчет объемов грунта при выполнении траншей для въезда в котлован

Для обеспечения въезда в котлован и выезда из него устраивают как минимум две траншеи (съезда-выезда). Ширина траншеи (Вr, м) принимается в зависимости от ширины планируемых для заезда в нее строительных и транспортных машин.

При одностороннем движении ширину траншеи по низу принимают равной Вт = Вт1 = 4,5 м, а при двухстороннем движении ширину траншеи по низу, принимают равной: Вт = ВТ2 =6 м.

Объем земляных работ (VТВ, м 3), при устройстве траншеи съезда определяют по формуле:

VТВ = (Н2 ( 3Вт + 2mН(m′ — m)/ m′) * (m′ — m) / 6(16)

Н – глубина котлована, м

Вт – (Вт1 и Вт2) ширина траншеи по низу, м

m – коэффициент заложения откоса котлована

m′ — коэффициент заложения откоса траншеи.

VТВ = (4(3 * 6 + 2 * 0,98) * 9,75) / 6 = 130 м3

1.6 Расчет объемов земельных работ по обратной засыпке выемок сбоку от периметра фундаментов

Объем земляных работ по обратной засыпке выемок (засыпка пазух) при послойном уплотнении грунта равен геометрическому объему полостей засыпки. Геометрический объем определяется по формулам известным из геометрии. Объемы сложных геометрических фигур при расчетах разбивают на более простые, которые по окончанию вычислений суммируются в общий объем.

Рис.1. Схемы определения объемов земляных работ и расположения элементов строящегося здания в котловане

1- откос котлована, 2- дно котлована, 3- условная линия границы верхней плоскости грунта недобора, 4- свая, 5- монолитный ростверк, 6- стена подвала

В промышленном и гражданском строительстве приходится в основном рассчитывать объемы котлованов, траншей, выемок и насыпей при вертикальной планировке площадок.

Объёмы земляных масс подсчитывают многократно: в процессе проектирования – по чертежам, при выполнении строительных процессов – по натуральным замерам.

В состав земляных работ обычно входят: вертикальная планировка площадок;

Вертикальную планировку выполняют для выравнивания естественного рельефа площадок, отведённых под строительство различных зданий и сооружений, а также для благоустройства территорий. Земляные работы по вертикальной планировке включают выемку грунта на одних участках площадки, перемещение, отсыпку и уплотнение его на других участках (в зоне насыпи).

Вертикальную планировку площадок на участке выемок осуществляют до устройства в них коммуникаций и фундаментов, а на участке насыпей – после устройства этих сооружений.

Читать еще:  Что такое подошва откоса котлована

Объёмы работ по вертикальной планировке площадок измеряются квадратными метрами поверхности.

Подсчёт объёмов разрабатываемого грунта сводится к определению объёмов различных геометрических фигур, определяющих форму того или иного земляного сооружения. При этом допускается, что объём грунта ограничен плоскостями, и отдельные неровности не влияют на точность расчёта.

Объём грунта измеряют кубическими метрами плотного тела.

Объём котлована вычисляют по формуле:

Vк = Н/6 ∙ [(2а + а1) ∙ b + (2a1 + а) ∙ b1],(17)

где Н – глубина котлована, м;

а, b – длины сторон котлована у основания, м;

а1, b1 – длины сторон котлована поверху (а1=а+2Нm; b1=b+2Нm);

m – коэффициент откоса.

а1 = а + 2Н ∙ m = 32 + 2∙2∙0,25 = 33 м

b1= b + 2Н ∙ m = 47 + 2∙2∙0,25 = 48 м

Vк = Н/6 ∙ [(2а + а1) ∙ b + (2a1 + а) ∙ b1] = 2/6 ∙ [(2∙32 + 33) ∙ 48 + (2∙33 + 32) ∙ 47] =2/6 ∙ [(64 + 33) ∙ 48 + (66 + 32) ∙47] = 2/6 ∙ [97 ∙ 48 + 98 ∙ 47] =

2/6 ∙ [4656 + 4606] =2/6 ∙ 9262 = 3056 м3

Рис.3 Геометрическая схема определения объёма котлована

При отрывке ям под отдельно стоящие фундаменты иногда используют формулу:

Vк = Н/3 (Fн + Fв + √Fн+Fв),(18)

где Fн и Fв – соответственно площади котлована по дну и поверху, м2.

При расчёте объёмов траншей и других линейно протяжённых сооружений их продольные профили делят на участки между точками перелома. Для каждого такого участка объём траншеи вычисляют отдельно, после чего их суммируют. Так, объём траншеи на участке между пунктами 1 и 2:

V1 – 2 = [Fср + m (H1 – H2)2/12] ∙ L1-2

V1 – 2 = [F1/2 + F2/2 – m ∙ (H1 – H2)2/6] ∙ L1-2

Рис.4 Геометрическая схема определения объёма траншеи

Рис.5 Разрез котлована: обратная засыпка грунта

С – сооружение, О – обратная засыпка

Для определения объёма обратной засыпки пазух котлована (траншеи), когда объём его (её) известен, нужно из объёма котлована (траншеи) вычесть объём подземной части сооружения (объём фундамента):

Vоб.з = Vк – а2 ∙ b2 ∙ H ,(20)

где а2 , b2 – размеры здания в плане.

Vоб.з = 2775- 45*30*2 = 75 м3

Земляные работы должны выполняться с комплексной механизацией всех процессов и применением рациональных способов производства работ. Выбор землеройных машин для производства земляных работ зависит от вида грунта, рельефа местности, объёма и глубины земляных выработок, условий выполнения работы (в отвал, на транспорт), транспортных средств и дальности перемещения грунтов.

К основным землеройным машинам относятся одноковшовые и многоковшовые экскаваторы.

В строительстве благодаря высокой производительности при разработке грунтов различных категорий наибольшее распространение получили одноковшовые экскаваторы. В зависимости от производственных условий в качестве сменного оборудования экскаваторов применяют прямые и обратные лопаты, драглайны, грейферы.

Крутизна откосов траншей

Наименование грунтаНаибольшая допустимая крутизна откосов при глубине траншеи, м
в сухих грунтахв водонасыщенных грунтах
до 1,51,5 – 3,03,0 – 5,0до 5
Насыпной63º 1:0,545º 1:138º 1:1,2538º 1:1,25
Песчаный гравелистый63º 1:0,545º 1:145º 1:138º 1:1,25
Супесь76º 1:0,2556º 1:0,6750º 1:0,8545º 1:1
Суглинок90º 1:063º 1:0,553º 1:0,7545º 1:1
Глина90º 1:076º 1:0,2563º 1:0,545º 1:1

Размер траншеи поверху определяют по формуле

Расчет объемов работ ливневой канализации

Рассчитывают следующие объемы работ:

1. Объем растительного слоя;

2. Объем траншеи;

3. Объем недобора грунта в траншее (объем ручной доработки);

4. Объем Основания под тело трубы;

5. Количество труб ливневой канализации;

6. Количество стыков;

7. Количество смотровых колодцев;

8. Количество дождеприемных колодцев;

9. Количество труб веток присоединения( водоотводных труб);

10. Объем ручной засыпки ;

11. Объем механизированной засыпки;

12. Объем лишнего грунта;

13. Объемы на заделку стыков железобетонных безнапорных раструбных труб;

14. Объемы на заделку стыков асбоцементных труб( веток присоединения)

15. Объемы для устройства смотровых колодцев;

16. Объемы для устройства дождеприемных колодцев.

В первую очередь для выбора рационального отряда дорожных машин при производстве земляных работ подсчитывают объем работ, включающий строительство временного водоотвода (если это необходимо), снятие растительного слоя, разработку траншеи для размещения подземных сетей. Толщину растительного слоя назначают от 0,15 до 0,30 см. При этом необходимо учитывать, что растительный грунт может быть частично использован при дальнейшем озеленении. При подсчете объемов земляных работ необходимо учитывать способ разработки траншеи, ширину дна траншеи, глубину заложения, диаметр трубы, а также минимальное расстояние между сетями (при совмещенной прокладке сетей).

При расчете количества грунта необходимо учитывать количество грунта на засыпку траншеи с учетом диаметра трубы и требуемого коэффициента уплотнения. В случае размещения траншеи под проезжей частью улицы местный грунт не пригоден для засыпки траншеи, его необходимо вывезти, а засыпку траншеи производить песком, с поливом его водой.

После определения объемов земляных работ (объем растительного слоя, объем грунта при разработке траншеи, объема грунта на засыпку траншеи и объема грунта на его вывозку) определяют объемы работ по устройству основания (песчаный, щебеночный или цементобетонный), количество труб для прокладки канализации, количество колец для устройства смотровых колодцев и количество труб для веток присоединения. Для этого необходимо знать протяженность трубопровода, расстояние между дождеприемными и смотровыми колодцами [ 8] , конструкции смотровых и дождеприемных колодцев (рис.4.5, 4.4).

Далее определяют объемы работ по заделке стыков между трубами согласно сборнику № 21 [17]. Находим по справочнику [18] массу элементов трубопровода и коллектора, массу колец для смотровых и дождеприемных колодцев.

Рассчитывают следующие объемы работ.

1. Объем растительного слоя Vр.с.

где L∙- длина дороги (длина ливневой канализации);

Ввширина траншеи по верху;

hр.с.— толщина растительного слоя.

Для расчета объема траншеи определяют среднюю глубину траншеи, в связи с тем, что ливневая канализация является безнапорной и укладывается с уклоном. Ориентировочный уклон траншеи определяют:

Средняя глубина траншеи равна:

; (5.8)

где Hmin — минимальная глубина траншеи определенная из условий размещения ливневой канализации по глубине (табл. 5.3);

Hmax — максимальная глубина траншеи, рассчитывается из экономических соображений.

Для самостоятельной работы Hmax принимаем равной 5м.

Тогда объем траншеи будет равен:

где Vгеом. — геометрический объем траншеи;

Vр.с. — объем растительного слоя;

Vнедоб. — объем недобора грунта при разработке траншеи экскаватором.

(5.10)

(5.11)

где — ширина по верху на границе верха недобора;

hнедоб. — толщина слоя недобора грунта.

; (5.12)

3. Определяем объем основания под тело трубы

; (5.13)

где Восн. — ширина основания по верху;

hосн. — толщина основания.

4.Определяем количество труб (Nтр.) ливневой канализации:

; (5.14)

где Lтр. — длина трубы (5 м);

5. Определяем объем ручной засыпки (Vр.з.)

(5.15)

где — ширина ручной засыпки по верху;

hр.з. — толщина ручной засыпки; hр.з.= D+2с+0,5м

r — внешний радиус трубы;

Котн. упл.— коэффициент относительного уплотнения.

6.Определяем объем механизированной засыпки (Vм.з.)

; (5.16)

где hм.з. — толщина слоя механизированной засыпки;

Коэффициент относительного уплотнения отн.упл.), назначается в зависимости от коэффициента уплотнения (Купл.) равного 0,95 и вида грунта, Котн.упл. принимаетсяпо СП34.13330-2012 в зависимости от Купл. и вида грунта

Читать еще:  Для чего необходим откос

7. Определяем объем лишнего грунта (V л.г..)

V л.г.. = V осн.+ Vтр. (5.17)

где Vтр.— объем занимаемый трубой;

Vтр. = пr 2 . L (5.18)

8.Определяем количество стыков труб (Nстык)

Nстык = Nтр. — 1 (5.19)

9. Определяем количество смотровых колодцев (Nск)

Nск. = L/ Lс.

где Lс. — расстояние между смотровыми колодцами

Расстояние между смотровыми колодцами назначается по таблице 5.3.

Диаметр трубопровода, мм200-450500-600700-9001000-14001500-2000Свыше 2000
Расстояние между смотровыми колодцами, м(Lс.)

Диаметры круглых колодцев и ширину прямоугольных колодцев следует принимать в зависимости от диаметра трубопровода ливневой канализации по таблице 5.4

Диаметр трубопровода, ммДо 600800-1000
Диаметр круглых колодцев, мм
Ширина прямоугольных колодцев, мм1300-1500

10. Определяем дождеприемных колодцев (Nд.к.)

где N — количество дождеприемных колодцев в оном поперечнике

(см. рис. 1.1-1.3 для заданного варианта)

11.Определяем количество труб веток присоединения (Nтр. в. пр..)

Ветки присоединения устраиваются из азбоцементных труб длиной 3-4 метра диаметр которых устанавливается в зависимости от диаметра смотрового колодца:

при диаметре смотрового колодца 1000мм — диаметр трубы 100мм

при диаметре смотрового колодца 1500мм — диаметр труб 200-300мм

при диаметре смотрового колодца 2000мм — диаметр труб 400мм

Диаметры круглых колодцев и ширину прямоугольных колодцев следует принимать в зависимости от диаметра трубопровода ливневой канализации по таблице 5.4

Диаметр трубопровода, ммДо 600800-1000
Диаметр круглых колодцев, мм
Ширина прямоугольных колодцев, мм1300-1500

Количество труб веток присоединения определяют согласно заданию в зависимости от представленного поперечного профиля городской улицы (по заданному варианту см. рис.1.1-1.3), от количество поперечников по длине улицы(количество поперечников определяют в зависимости от диаметра ливневой канализации табл.5.3,расстояния между дождеприемными колодцами по длине дороги, ширины дорожных покрытий и длины одной трубы.

Пример : Длина дороги -5000м, диаметр ливневой канализации-800мм, в поперечном профиле две проезжие полосы каждая по15м шириной,между проезжими полосами разделительная полоса -6м,длина ветки присоединения-3м.

1. Количество поперечников( -расстояния от колодца до колодца по длине дороги согласно таблицы 5.3 состовляет-100м) составит-50шт.;

2.Количество дождеприемных колодцев в одном поперечнике-4, по два колодца на каждой полосе

3.Длина веток присоединия в одном поперечнике состовляет-30м

4.Количество труб веток присоединения в одном поперечнике -10шт.

5.Количество труб веток присоединения по всей длине дороги-500шт.

6.Количество смотровых колодцев -50шт.

Рис. 5.2. Схема расположения ливневой канализации на улице:

а – при двустороннем (дублированном) размещении; б – при

одностороннем водостоке; 1, 3 – разделительные зеленые

полосы; 2 – тротуар; 4 – проезжая часть; 5 – водоприемный

колодец; 6 –ветки присоединения (водосточные ветки) (последовательное присо-

единение водосточных веток); 7 – то же, параллельное; 8 –

продольный водосток; 9 – смотровой колодец

12.Определяем количество материалов необходимых для заделки стыков железобетонных безнапорных раструбных труб ливневой канализации на весь объем и на захватку согласно сборнику № 21 [17].

13. Определяем количество материалов необходимых для заделки стыков асбоцементных труб ( труб веток присоединения) ливневой канализации на весь объем и на захватку согласно сборнику № 21 [17]

14. Определяем количество материалов необходимых для строительства смотровых и дождеприемных колодцев на весь объем и на захватку согласно сборнику № 21 [17].

Все расчитанные объемы работ сводят в таблицы Затем определяют сменные объемы работ. Для сменных объемов расчитывают потребности в машинах,оборудовании,рабочих по профессиям и разрядам.

Лекции / Земляные работы. Общие положения

Технология строительных процессов.

Земляные работы. Общие положения.

При строительстве любого здания или сооружения, а также планировке и благоустройстве территорий ведут переработку грунта. Переработка включает следующие основные процессы: разработку грунта, его перемещение, укладку и уплотнение. Непосредственному выполнению этих процессов в ряде случаев предшествуют или сопутствуют подготовительные и вспомогательные процессы. Подготовительные процессы осуществляют до начала разработки грунта, а вспомогательные — до или в процессе возведения земляных сооружений. Весь этот комплекс процессов называется земляными работами .

В промышленном и гражданском строительстве земляные работы выполняют при устройстве траншей и котлованов, при возведении земляного полотна дорог, а также планировке площадок. Все эти земляные сооружения создают путем образования выемок в грунте или возведения из него насыпей.

Выемки и насыпи могут быть временными и постоянными. Постоянные земляные сооружения – плотины, дамбы, каналы, водохранилища и т.п. – предназначены для длительной эксплуатации. Временные земляные сооружения устраивают как необходимый элемент для последующих строительно-монтажных работ. К ним относятся котлованы и траншеи.

По своему назначению выемки и насыпи могут быть частью вертикальной планировки площадки (планировочные выемки и насыпи) и отдельными выемками и насыпями. Отдельные выемки называют котлованами , если соотношение их длины к ширине не более 10:1, и траншеями , если оно более этой величины. Наклонные боковые поверхности выемок и насыпей называют откосами , а горизонтальные поверхности вокруг них — бермами . Остальными элементами земляных сооружений являются: дно выемки — нижняя горизонтальная земляная поверхность выемки; бровка — верхняя кромка откоса; подошва — нижняя кромка откоса; крутизна (или коэффициент) откоса m=h/B, где — h-глубина выемки или высота насыпи; B-заложение откоса (рис. 1).

Рисунок 1. Части котлована: 1 – дно; 2 – бровка; 3 – берма; 4 – подошва.

К земляным сооружениям относятся также резервы и кавальеры. Резервы — это выемки, из которых берут грунт для устройства насыпи, а кавальеры — это насыпи, образуемые при отсыпке ненужного грунта, например для временного его хранения, используемого затем вновь для засыпки траншей или пазух котлованов.

Земляные сооружения при их эксплуатации не должны изменять своей формы и основных размеров, давать просадок, размываться под действием текущей воды и поддаваться влиянию атмосферных осадков.

Технология строительных процессов.

Земляные работы характеризуются значительной стоимостью и особенно трудоемкостью. Так, например, в промышленном строительстве они составляют около 15% стоимости и 18. 20% трудоемкости общего объема работ. На земляных работах занято около 10% общей численности рабочих строительства.

Минимальные стоимость и трудоемкость земляных работ могут быть обеспечены, во-первых, при минимальном проектном объеме разрабатываемого грунта и, во-вторых, при такой последовательности выполняемых работ, когда каждый объем грунта, разрабатываемый в проектной выемке, сразу укладывается в предусмотренное для него место в проектной насыпи, что исключает многократную переработку одного и того же объема грунта, в-третьих, при применении наиболее эффективных по стоимости и трудоемкости методов производства земляных работ и их механизации. Второе условие может быть выполнено при соблюдении определенной технологической последовательности разработки выемок и возведения насыпей. Особенно характерно это для строительных площадок, где ведется вертикальная планировка территории и разработка отдельных выемок (рис. 2). В этом случае на участке планировочной насыпи необходимо закончить отрывку котлована до возведения насыпи, а на участках планировочной выемки — только после выполнения последней. Грунты планировочной выемки необходимо одновременно с разработкой перемещать и укладывать в тело планировочной насыпи, за исключением резервируемых объемов, используемых впоследствии для засыпки пазух подземных частей сооружений. Для выполнения третьего условия необходимо прежде всего выбрать эффективную технологию производства земляных работ с применением комплектов высокопроизводительных и экономичных машин и транспортных средств.

Рисунок 2. Разграничение вертикальной планировки: 1 — разработка котлована на участке планировочной насыпи; 2 — разработка грунта планировочной выемки с перемещением в насыпь; 3 — разработка котлована на участке планировочной выемки; 4 — засыпка пазух зарезервированным грунтом; А — профиль земли; Б — уровень планировки; В — подземная часть здания.

Читать еще:  Покраска откосов водоэмульсионной краской своими руками

В настоящее время грунт перерабатывают механизированным способом с помощью различных землеройных, землеройно-транспортных машин, средств гидромеханизации, бурением, а также взрывным способом. Однако на многих объектах при мелких рассредоточенных объемах работ, при прокладке подземных инженерных сетей, устройстве фундаментов в стесненных условиях, при зачистке и оформлении дна и откосов котлованов, при укладке и уплотнении грунта в стесненных условиях и т. п. применяется ручной труд. Производство работ вручную даже в небольших объемах влияет на общие затраты труда, так как производительность ручного труда в 20. 30 раз ниже механизированного.

Дальнейшее совершенствование технологии производства земляных работ идет по пути повышения организационного технологического уровня производства, совершенствования существующих и разработки новых моделей высокопроизводительных землеройных и землеройно-транспортных машин и навесного оборудования к ним.

Технология строительных процессов.

При производстве земляных работ все подготовительные, вспомогательные и основные процессы выполняют комплектами машин, каждая из которых предназначена для определенного рабочего процесса или операции (разработка, транспортирование, разравнивание и уплотнение грунта; зачистка дна выемки; планировка откосов и т. д.). В общем случае одна и та же работа может быть сделана с большей или меньшей эффективностью различными комплектами машин. Способ и комплект машин для конкретных производственных условий выбирают на основании технико-экономического анализа и обоснования различных вариантов.

Схемы участков складирования на полигоне ТБО

Основным сооружением полигона является участок складирова­ния ТБО. Схема сооружения зависит от рельефа участка. Различа­ют основные типы участков: плоские, овражные, на отработанных карьерах (карьерные).

Плоские участки. На плоских участках полигонов, принимающих более 120 тыс. м 3 ТБО в год, применяют высотную схему (рис. 8.2). Высоту полигона над уровнем земли участка Н определяют из усло­вия заложения внешних откосов 1:4 и необходимости иметь раз­меры верхней площадки, обеспечивающие безопасную работу мусо­ровозов и уплотняющей техники

где Ш — ширина участка складирования у основания, м; Ш, — ширина верхней площадки, м.

а — схематический разрез; б — план дороги на верхнюю площадку: 1 — на­ружная (окончательная) изоляция; 2 — промежуточная изоляция; 3 —ТБО; 4 — дорога; 5 —водоупорное основание; 6 — верхняя площадка; Н — высота; h —показатель сниження высоты; Ш — ширина; УГВ — уровень грунтовых вод; Нм — глубина котлована в основании полигона

Минимальную ширину верхней площадки Шв определяют удво­енным радиусом разворота мусоровозов, равным, как правило, 9х2=18 м и соблюдением правила размещения мусоровозов не бли­же 10 м от откоса. Минимальная ширина составляет 18+10·2=38м. При использовании большегрузных транспортных мусоровозов IIIв принимают не менее 45 м.

Фактическую вместимость полигона Еф с учетом уплотнения рас­считывают по формуле усеченной пирамиды

где С1, С2, С3 — площади полигона на уровне земли, верхней пло­щадки и днища котлована, м 2 ; Нк — глубина котлована в основании полигона, м.

Потребность в изолирующем материале Вг определяют по фор­муле

Оптимальным решением по обеспечению полигона изолирующим материалом является отрытие котлована в основании полигона. В рассматриваемых условиях Вг —вместимость котлована.

Среднюю проектируемую глубину котлована в основании поли­гона определяют по формуле

где 1,1—коэффициент, учитывающий откосы и картовую схему эксплуатации котлована.

Объем ТБО на полигоне в уплотненном состоянии Ву состав­ляет:

Таблица 8.5. Вместимость полигона ТБО по высотной схеме

Объем ТБО, который может принять полигон за весь период эксплуатации Т в неуплотненном состоянии, составляет:

В табл. 8.5 даны примеры расчета вместимости полигонов для варианта без котлована в основании, плотности ТБО до уплотнения 200 кг/м 3 , сроке эксплуатации полигона Т не менее 15 лет и при­менении для уплотнения бульдозеров массой 12. 14 т. При устрой­стве в основании полигонов котлованов на всю потребность в изо­лирующем материале Внувеличивается на объем ВгК1.

Участок складирования разбивают на очереди строительства и эксплуатации с учетом обеспечения в каждую очередь в течение 3. 5 лет приема ТБО. В составе первой очереди выделяют пусковой комплекс на первые 1. 2 г. В первую, вторую и, если позволяет площадь участка, в третью очередь складирование отходов ведут на высоту 4. 5. 6,75 м. Последующая очередь эксплуатации заклю­чается в увеличении насыпи ТБО до проектной отметки. Разбивку участка складирования на очереди выполняют с учетом рельефа местности.

Размещение грунта из котлованов первой очереди проектируют в кавальерах по периметру полигона (для использования в качестве наружной, окончательной изоляции при закрытии полигона). Из котлованов второй очереди грунт подают на изоляцию ТБО на кар­тах первой очереди.

Для климатического района, где размещается полигон, с учетом данных по количеству выпадающих осадков, испаряемости их с по­верхности и средней влажности ТБО рассчитывают возможность образования жидкой фазы — фильтрата. Фильтрат не образуется при складировании ТБО с влажностью менее 52 % в климатических рай­онах, где годовое количество атмосферных осадков превышает не более чем на 100 мм количество влаги, испаряющейся с поверхности (гг. Анадырь, Баку, Верхоянск, Магадан, Свердловск, Сургут, Таш­кент, Якутск). В этих климатических районах к основанию полигона ТБО не предъявляются требования по водонепроницаемости.

Основание (днище) полигона проектируют с учетом возможнос­ти образования в массе ТБО фильтрата при складировании ТВО с влажностью выше 52 % и атмосферных осадках, превышающих на 100 мм за год количество влаги, испаряющейся с поверхности полигона. Днище котлована в пределах одной очереди эксплуатации предусматривают строго горизонтальным, что обеспечивает равно­мерное распределение фильтрата по всей площади основания^

Учитывая рельеф местности и очередность складирования ТБО, участок разбивают на ряд котлованов. На участках с уклоном бо­лее 0,5 % проектируют каскад котлованов (рис.8.3).

1- кавальер грунта для изолирующих слоев; 2 — уровень поверхности участка до разработки котлованов; 3 — горизонтальное основание; 4 — промежуточный вал; УГВ — уровень грунтовых вод

Перепад высот верхнего и следующих промежуточных валов котлованов, а также разность отметок оснований двух смежных котлованов должны быть (без специального расчета на устойчи­вость) не более 1 м. По верху промежуточных валов можно рас­полагать временную дорогу для проезда мусоровозов. Основание под складирование ТБО должно иметь водоупорный экран с учетом данных, приведенных в табл. 8.6.

Конструкция полигона должна предотвратить или понизить миг­рацию токсичных веществ из ТБО в грунтовые воды и открытые водоемы до концентраций, не превышающих ПДК для воды водо­емов (табл. 8.7), обеспечивающих органолептический и миграционно-водный показатели.

Защитные свойства грунтового экрана в основании полигона по миграционно-водному показателю определяют коэффициентом филь­трации. Коэффициент фильтрации находят по методу Канараке или при помощи трубки «спецгео», приведенных в руководстве Е. И. Гон­чарука и Г. И. Сидоренко.

Сварку полос полиэтиленовой пленки стабилизированной сажей осуществляют с помощью сварочного экструдера ПСТ-2 ВНИИ кор­розии (Москва), выполняя установленные требования.

Полосы сваривают в полотнища площадью около 500 м 2 на выровненном деревянном полу в закрытом помещении, которые за­тем транспортируют в рулонах на полигон и на месте склеивают между собой специальными мастиками с нахлестом 50 см.

Дорогу для проезда мусоровозов проектируют по внешнему от­косу высотного полигона с уклоном 6 %.

Коэффициентфильтрации Кф, см/с

Рекомендуемая конструкция основания полигона

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector