Dessadecor-nn.ru

Журнал Dessadecor-NN
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Конструкция стены с облицовочным кирпичом

Конструкция стены дома из пеноблока и облицовочных кирпичей

Облицовочный кирпич, отличающийся от чернового кладочного материала минимальными отклонениями геометрических размеров и правильностью форм, а также отсутствием сколов, трещин и равномерным стойким цветом, имеет достаточно высокую стоимость.

Именно поэтому применять его для строительства конструкционной основы здания экономически не целесообразно, а лучше использовать в качестве облицовки стен домов, сложенных из пеноблоков и обычного кладочного кирпича.

Конструкция облицовочных фасадов

Облицовочным фасадом называется отдельный элемент здания или дома, собранный из конструкционных декоративных материалов и имеющий привязку к основному массиву, который может быть выполнен из монолитного железобетона, либо собран из кирпича или пеноблоков. Выполняя декоративную функцию, облицовка зданий не несет на себе существенных нагрузок в виде перекрытий, которые воспринимает основная стена, а связи облицовочного и конструкционного слоя необходимы для выдерживания ветровых нагрузок и обеспечения стабильного положения.

Так как облицовка и основная стена дома не связываются между собой посредством раствора и часто имеют разные параметры паропроницаемости, отсутствие вентиляционного зазора неизбежно приведет к переувлажнению пенобетона, образованию плесени и преждевременному разрушению конструкции стены. Чтобы избежать этого и обеспечить вековой срок службы декоративного кирпича, гарантируемый производителями, необходимо обустройство вентиляционного зазора и системы отвода конденсата и атмосферной влаги. Такой зазор можно не делать только в том случае, если паропроницаемость пеноблоков будет больше чем у кирпичной облицовки. Для этого необходимо использовать блоки плотностью более 1000 кг/м3, но для строительства их используют редко — это в большинстве случаев экономически нецелесообразно.

Вентилирование стен

Рекомендуемое расстояние, на которое внешняя стена дома должна отстоять от облицовочного слоя должна составлять не более 100 мм, а при обустройстве дополнительной теплоизоляционной прослойки, облицовка должна отстоять от внешней её поверхности не более, чем на 40 мм. Выдержав указанные расстояния, можно гарантировать, что пары теплого воздуха, поступающие по направлению изнутри дома наружу, сконденсируются и стекут по внутренней поверхности декоративного кирпича. Очевидно, что влагу из вентиляционного зазора надлежит отводить, а чтобы это выполнить, отделочная кирпичная кладка дома должна быть оснащена дренажными устройствами.

Отвод конденсата и атмосферной влаги из пространства между облицовочным и конструкционным слоями можно организовать, применив два типа устройств:

  1. Штатные пластиковые закладные элементы, снабженные изнутри наклонным желобом для стока влаги и шторками на лицевой стороне, расположенными под углом, позволяющим жидкости выходить наружу, но исключающим попадание осадков и насекомых извне.
  2. Самодельные элементы, представляющие собой цилиндры, свернутые по длинной стороне из нейлоновой армирующей сетки с размерами 650х200 мм и вставленные в вертикальные швы отделочной стены дома.

Чтобы конденсат беспрепятственно покидал вентиляционный зазор, а стена оставалась изнутри сухой, необходимо обустройство гидроизолирующих фартуков под нижний ряд кладки, между кирпичом и фундаментом, и над каждым проемом.

Позиционирование дренажей

Чтобы обеспечить беспрепятственную естественную конвекцию воздуха в вентиляционном зазоре, необходимо располагать дренажные устройства на одной вертикальной оси с шагом не более 6 метров, но не менее двух. Первая вставка устанавливается непосредственно на битумизированный фартук между фундаментом и первым рядом отделочного кирпича, а последняя в самом верхнем ряду. Для оптимального отвода влаги гидроизоляцию желательно закладывать в горизонтальный шов между пеноблоков или кирпичей несущей стены.

Горизонтальная разбежка между дренажными устройствами не должна превышать 1 метра, а при наличии проемов требуется формирование дополнительных вертикалей проветривания в количестве не менее двух на каждое препятствие. Каждая вертикаль должна начинаться от основания внешней стены дома и заканчиваться в крайнем ряду кирпича.

Первая вертикальная ось формируется на расстоянии не менее 250 мм от угла дома, и далее с шагом до 1 метра, а дополнительные вертикали, обусловленные наличием проемов, позиционируются не ближе 25 см от их краев.

Фиксирование облицовки

Вне зависимости от высоты дома, свободностоящая внешняя стена толщиной в полкирпича не в состоянии выдержать ветровую нагрузку и сезонные деформации фундаментов из-за колебаний грунта.

Чтобы облицовка не разрушилась и сохранила свою декоративную функцию в полном объеме, требуется её анкерование к конструкционному слою, строительство которого может быть выполнено из любого материала, в том числе пеноблоков, железобетона или кирпича.

Под анкерованием следует понимать скрепление двух стен, внутренней несущей и внешней облицовочной, между собой посредством металлических стержней различного исполнения, определяемого размерами элементов и свойствами материалов.

Выбор и требования к анкерам

Существуют следующие анкера:

  • закладные, то есть монтируемые в швы пеноблоков или кирпича при строительстве здания;
  • внедряемые, используемые при несовпадении геометрических размеров элементов конструкционного и отделочного слоёв, либо для стен ранее возведенного дома.

Один конец анкеров, вне зависимости от типа детали, имеет волнистый профиль и закладывается в шов облицовки, а второй отличается по геометрии в зависимости от назначения, в том числе:

  • пластина — используется для клеевых швов;
  • загнутый конец — закладывается в полные швы;
  • спиральный наконечник — используется при вбивании;
  • винтовой профиль — применим для вкручивания в дюбель.

  1. Допустимое материальное исполнение — нержавеющая сталь, в противном случае коррозия разрушит детали раньше, чем разрушится облицовка. Слишком высокая твердость нежелательна, так как недостаточная эластичность анкера может повредить поверхность облицовочного кирпича.
  2. Анкер должен быть снабжен полимерным каплеотбойником, не позволяющим влаге попасть на поверхность теплоизоляционного слоя и прижимающим его вплотную к внутренней несущей стене, а также задающим минимальное значение вентилируемого зазора на уровне 20 мм.
  3. Диаметр не должен превышать 4 мм, а повышенное значение ветровой нагрузки следует компенсировать увеличением числа анкеров, но не поперечного сечения.
  4. Для внедряемых анкеров необходимо бурить отверстия в несущей стене дома и вбивать в них пластиковые дюбеля, отличающиеся по конструкции: с воротником для вбиваемых и без воротника для вкручиваемых элементов соответственно.

Планировка анкерования

Потребное число анкеров на 1 кв. метр несущей стены дома определяется значением ветровой нагрузки характерным для конкретного региона строительства, а в усредненном варианте определяется из расчета 5 штук на квадратный метр. Располагаются крепежные элементы в шахматном порядке с фиксированным шагом:

  • для основной стены — 0,5 м по горизонтали и 0,4 метра во вертикали;
  • в зоне обрамления проемов — 0,3 метра в обоих направлениях.

Расстояние точек крепления от углов здания, компенсационных швов и краев проемов не должно быть менее 150 мм и не желательно отступать более 250 мм.

Компенсация температурного расширения стены

Колебания температур в различных регионах страны могут достигать от +50 до -50 о С, а иногда и в более широком интервале, что неизбежно приводит к изменению линейного размера кирпича и относительным смещениям облицовки на величину до 0,1 мм на каждый погонный метр кладки. Чтобы обеспечить целостность облицовочного слоя, при строительстве должны быть предусмотрены компенсационные швы, заполненные эластичным полимерным материалом в виде жгута способного к многократному сжатию и расширению. Оптимальный режим компенсации достигается за счет сетки расшивок в горизонте и по вертикали.

Разметка вертикальных температурных швов зависит от стороны света, к которой обращен фасад здания, в частности:

  • западный фронтон расшивается через каждые 7–8 метров;
  • южную стену надлежит снабдить швами, отстоящими на 8–9 метров друг от друга;
  • восточный фасад снабжается компенсационными зазорами с шагом 10–12 метров;
  • северная сторона здания требует расшивки через 12–14 метров.

Расстояние между температурными швами, расположенными в горизонтальной плоскости, определяется шириной кирпича и характером его опирания на фундамент, а именно:

  1. При толщине кладки в 120 мм и полном опирании кирпича на основание, швы можно разносить не более, чем на 12 метров.
  2. При фасаде толщиной 120 мм, опирающемся на фундамент не всей плоскостью кирпича, расстояние между температурными зазорами должно быть в интервале 6–8 метров.
  3. Уменьшение ширины элементов облицовки до 60 мм, даже при полном опирании, требует расшивки через каждые 4 метра по вертикали.
Читать еще:  Кирпич для кладки стен гаража

Выбор местоположения швов

Температурные зазоры выполняются с регламентированными интервалами для длинных и высоких стен, а также при изменении геометрии несущей стены, в частности:

  • в углах зданий;
  • для ступенчатых оснований;
  • при наличии уступов в профиле фасадов;
  • в местах расшивок конструкционного слоя, то есть там, где предусмотрены зазоры в железобетонном монолите или кладке из пеноблоков/кирпича.

Исполнение компенсационных зазоров

Вертикальную щель выполнить достаточно просто, для этого достаточно при строительстве оставить незаполненным зубчатый шов между сопрягаемыми частями фасада или выполнить его прямым, разрезав каждый второй кирпич в кладке пополам.

Выполнить зазор в горизонтальной плоскости сложнее и потребуются для этого специальные консоли, представляющие собой металлические уголки, усиленные «косынками», которые крепятся к поверхности пеноблоков или иного материала несущей стены. Вертикальная часть такого уголка прижимается к конструкционному слою или утеплителю, а горизонтальная полка совпадает с компенсационным швом и на неё производится укладка вышележащего ряда облицовочных кирпичей.

Усиление проемов

Любой проём в облицовочной стене является концентратором напряжений и при отсутствии усиления конструкции со временем в углах таких элементов появляются трещины, распространяющиеся дальше под углом равным примерно 45 о . Чтобы избежать разрушения облицовки по описанному сценарию, строительство декоративного фасада должно предусматривать закладку в швы между кирпичами усиливающих элементов. Конструктивно такие элементы представляют собой два параллельных металлических прута диаметром 5 мм, расстояние между которыми зависит от ширины кладки, а связь осуществляется за счет профилированного прута аналогичного сечения соединяемого точечной сваркой. В качестве материла прутка допускается использовать оцинкованную сталь, так как элемент полностью заделывается в шов и находится в щелочной среде кладочного раствора.

Укладка подобных усилений производится на консоли, закрепляемые на поверхности пеноблоков или иного материала несущей стены и используемые для обустройства компенсационных швов, позволяя отказаться от последних или существенно увеличить величину шага. Обрамив проемы в фасаде при помощи подобных усиливающих элементов и подвесив первый ряд над окнами или дверьми при помощи специальных «стремян», удается придать конструкции жесткость и избежать растрескивания облицовки.

Описанная система усиления является новшеством, успешно заменяющим в последние годы железобетонную балку, которую повсеместно используют для усиления проемов, путем укладки сверху. Длина такой балки должна быть больше, чем усиливаемый проем, а концы заделываются в кирпичную кладку. Использование подобного конструктивного элемента портит внешний вид фасада, нарушая целостность картины, собранной из облицовочного кирпича, и поэтому не рекомендуется к использованию.

Облицовка газобетона кирпичом

Автоклавный газобетон является одним из тех материалов, который сочетает в себе конструкционные и теплоизоляционные свойства. Однако, необходимо помнить, что газобетонные блоки имеют приличное водопоглощение и отлично впитывают воду, а от увлажнения увеличивается теплопроводность (стены становятся холоднее), снижается прочность и сокращается долговечность ограждающей конструкции.

Главным фактором увлажнения являются внешние осадки, имеющие преимущественно кислотный характер и, разрушающе воздействующие на газобетон. Потому внешнюю часть газобетонных стен необходимо защищать от прямого попадания воды, путем выполнения наружной отделки.

Самыми распространенными способами защиты газобетона является оштукатуривание, облицовка кирпичом и устройство навесного вентилируемого фасада. В этой статье рассмотрим как выполняется облицовка газобетона кирпичом без вентилируемого зазора, и с воздушным вентиляционным зазором.


При выборе данной ограждающей конструкции, необходимо еще на этапе ведения фундаментных работ, рассчитать ширину фундамента, так чтобы на нем без свесов вместились газобетонные блоки и кирпич.

Достоинством данного решения является отсутствие так называемых влажных процессов – оштукатуривания, недостатком – существенное увеличение толщины фундамента.

Двухслойная наружная стена без вентиляционного зазора


Ограждающая конструкция состоит из внутренней основной стены из газобетона и наружной стены из облицовочного кирпича, которые вплотную соединяется с помощью анкеров путем перевязки кладкой.

Однако, стоить отметить, что облицовка газобетона кирпичом без вентилируемого зазора нарушает главный принцип размещения слоев в многослойной стеновой конструкции. Исходя из этого принципа слои должны быть расположены так, чтобы их паропроницаемость, в направлении к фасаду, увеличивалась бы, либо была бы одинаковой. У газобетона коэффициент паропроницаемости, составляет 0,17-0,23 мг/(м*ч*Па), а у облицовочного керамического кирпича,0,14 мг/(м ч Па), получается что при такой конструкции в зоне контакта газобетона и кирпича будет накапливаться влага.

Поэтому перед возведением стен, нужно рассчитывать паропроницаемость всех слоев ограждающей конструкции, определить эксплуатационную величину влажности стен, найти точку конденсации влаги, и просчитать, возможно ли полное испарение этой влаги в течении весенне–летнего периода. При расчете, следует также учитывать, что анкера и керамический кирпич, которые заходят в кладку, будут образовывать мосты холода в газобетоне.

И, даже не смотря на такие трудоемкие расчеты, все равно, невозможно предотвратить процесс более интенсивного разрушения газобетонных стен, так как газобетон и кирпич, обладающие неодинаковыми свойствами, находятся в плотном контакте и при этом будут подвергаться различным температурным и влажностным деформациям.

Испытания, проведенные ведущими производителями газобетона, показывают, что облицованная кирпичом стена из газобетона без вентиляционного зазора, под влиянием климатических факторов разрушается неравномерно. Наиболее интенсивно будет происходить процесс разрушения в наружной трети газобетонной стены, примыкающей к облицовочному кирпичу, поскольку именно в этой части будет накапливаться влага, а при минусовой температуре будет происходить ее промораживание. Поэтому более правильным и рациональным вариантом будет облицовка газобетона кирпичом с вентиляционным зазором между облицовочной и несущей стеной.

Двухслойная наружная стена с вентилируемым зазором

Стеновая конструкция устраивается с вентиляционным воздушным зазором шириной 40мм, между несущей основной стеной из газобетона и облицовочной кирпичной стеной. Для того, чтобы при выполнении кладки в зазор не попадала растворная смесь, в данное пространство помещают, подходящий по размеру переставляемый лист из легкого материала.


Соединение облицовочной стены с несущей стеной выполняется с помощью анкеров. Применяются стержневые анкеры из нержавеющей стали ∅ 3мм -4мм или анкерные пластины шириной 30мм -40мм.

Анкера, соединяющие несущий и облицовочный слои, должны иметь площадь поперечного сечения не менее 0,4 см2 на 1м2 стены или количество не менее 5-6 штук на 1 м2 кладки. В углах стен, дверных и оконных и проемах устанавливают по 3 -4 анкера на 1 мп стены, на расстоянии, 150мм -200мм от ее края. Анкера рекомендуется заделывать в несущую газобетонную стену, на глубину не менее 1/3 толщины кладки.

Облицовка газобетона кирпичом предусматривает наличие в облицовочном слое вентиляционных щелей – продухов, необходимых для циркуляции воздушной массы в прослойке и удаления из нее водяных паров. Продухи можно выполнить путем не заполнения раствором в нижних и верхних рядах облицовочной кладки части вертикальных швов. Количество продухов должно быть таким, чтобы общая их площадь составляла от 0,5 до 1% от площади стены.

Газоблок + кирпич – третий не лишний?

Повышение доступности жилья — один из двигателей прогресса в стройиндустрии. В условиях конкуренции застройщики стремятся удешевить стоимость строительства за счет использования современных материалов и технических решений. Например, в последние десятилетия в нашей стране приобрели большую популярность двуслойные стены из газобетона и кирпича. Облицовочный кирпич придает таким домам внешнюю респектабельность, а легкий и достаточно теплый газобетон отвечает, в том числе за комфорт. Двуслойные стены дешевле полностью кирпичных, а архитектурный образ здания мало отличается. Но обеспечат ли такие стены необходимый комфорт и долговечность дома? Разбираемся вместе с экспертом – техническим специалистом по коттеджному и малоэтажному строительству Корпорации ТЕХНОНИКОЛЬ Александром Плешкиным.

Прослужит ли дом нескольким поколениям?

Долговечность – один из важных критериев при выборе технологий для строительства дома. В «Инженерно-строительном журнале» №8 (2009 г) приведены результаты испытаний газобетонных стен с кирпичной облицовкой. Выводы ученых удивляют: срок службы такой стены составляет от 60 до 110 и более лет. Испытывались материалы одного качества в условиях одного и того же региона. Как выяснилось, столь заметная разница обусловлена технологией применения материалов: увеличить срок эксплуатации позволяет наличие вентиляционного зазора между слоями стены.

Читать еще:  Кухни где стены под кирпич

«Вообще отделка газобетона кирпичом без вентиляционного зазора допустима только для неотапливаемых помещений. В противном случае из-за разницы температур теплый и влажный воздух из помещения устремится наружу, пар начнет скапливаться между слоями стены, разрушая и кирпич, и газобетон, — комментирует Александр Плешкин. – Наличие вентилируемого зазора, обеспечивающего циркуляцию воздуха (его вход у основания и выход наверху здания) позволит беспрепятственно выводить водяной пар. Срок службы таких домов заметно выше при наличии слоя теплоизоляции, который выведет точку росы из газобетона и увеличит термическое сопротивление всей конструкции».

Погода в доме

В том, что погода в доме главней всего, мало кто сомневается. Считается, что для теплых регионов стена из газобетонных блоков толщиной 300–400 мм и облицовкой в половину лицевого кирпича укладывается в нормативные требования. Соответственно, в доме должно быть достаточно тепло и уютно. Но по факту зимой жители таких домов очень часто вынуждены использовать всевозможные системы отопления. Особенно в первые годы после постройки, когда дом «сохнет». Учитывая стоимость электроэнергии, для семейного бюджета такой способ согреться может быть накладным. Кроме того, из-за нарушения температурно-влажностного режима дома микроклимат в помещении становится хуже, образовывается сырость и плесень, особенно в углах и на стыках «пол-стена-потолок».

Результаты проводимых Службой Качества ТЕХНОНИКОЛЬ тепловизионных обследований объектов говорят о некоторых проблемах, связанных с эксплуатацией домов, построенных по технологии, которая не предусматривает вентиляционный зазор и слой утепления между газобетоном и кирпичом.

Например, в марте 2016 года проводилась тепловизионная съемка фасада жилого комплекса в Московской области.

Данные по объекту:

Тип объекта – таунхаус на стадии эксплуатации;

Дата сдачи объекта – 30 ноября 2015 г.;

Дата проведение осмотра – 1 марта 2016 г.;

Конструкция фасада – газобетонный блок (400 мм) + облицовочный кирпич (120 мм), утепление отсутствует.

«Влажные пятна на фасаде могут быть следствием двух причин, — комментирует Александр Плешкин. — Возможно, мокрые процессы внутренних отделочных работ производились в холодное время года. В данный период кладка еще не успела высохнуть. Также отсутствуют входные и выходные отверстия для создания движения воздуха в вентилируемой кладке. Паровоздушная смесь, которая проникла в кладку из внутренних помещений, встретилась с отрицательной температурой на улице, в результате чего выпала в виде конденсата — воды. Вторая возможная причина образования локальных пятен — наличие мощных теплопроводных включений, которые и выступили в качестве источника конденсата в большом количестве».

Почему расчеты расходятся с фактами?

При использовании тепловизионной съемки были выявлены тепловые потери в местах примыкания стены к кровле, цокольной части, и по контуру плит перекрытий по всему периметру фасада.

«Это связано с тем, что на стадии проектирования теплотехнический расчет фасада соответствует нормам по тепловой защите зданий. Нюанс в том, что расчеты проводятся по глади фасада, без учета мест сопряжений и примыканий плит перекрытий со стеной, окнами, устройства армапоясов и мауэрлатов и так далее. Также не стоит забывать про учет теплопотерь при укладке блоков – в швах в большинстве случаев используется классический цементно-песчаный раствор, реже — специальный тонклослойный клеевой, но вне зависимости от выбранного типа данный способ соединения блоков создает мосты холода, которые и могут спровоцировать конденсацию паров остаточной строительной влаги. Если еще учитывать теплопотери через неоднородности, то получаем уже критические значения», — объясняет эксперт.

Результаты расчетов с учетом всех теплопроводных включений будут приведены ниже, но то, что они будут отличаться от изначальных расчетов, подтверждается результатами тепловизионной съемки.

Рисунок 2. Тепловизионная съемка 1 этажа
Рисунок 3. Тепловизионная съемка 2 этажа

На фотографиях ниже наглядно демонстрируются теплопроводные включения (так называемые тепловые мосты) через плиты перекрытия, цоколь и сопряжения фасада с крышей, а также нарушения технологии строительства.

Рисунок 4. Тепловые потери

Ситуацию хорошо объясняют результаты испытаний тепловой однородности двуслойных стен, проведенных экспертами из Санкт-Петербурга А. С. Горшковым, П. П. Рымкевичем и Н. И. Ватиным. Они провели расчет приведенного сопротивления теплопередаче наружных стен типового многоквартирного жилого здания с конструктивной монолитно-каркасной схемой и двухслойными стенами из газобетона с наружным облицовочным слоем из кирпича в Санкт-Петербурге. Полученное значение 1,81 м2•°С/Вт не соответствуют не только требуемым 3,08 м2•°C/Вт, но и даже минимально допустимым нормативным требованиям 1,94 м2•°C/Вт. Различия в коэффициентах теплотехнической однородности исследователи объясняют различиями использованных в проекте конструктивных решений, количественного и качественного состава теплопроводных включений с учетом их геометрической формы. То есть учитываются все так называемые мостики холода, которые присутствуют в проекте: вид и материал крепежа, плиты перекрытия, стыки, обрамления и примыкания к стенам и окнам и так далее. Довольно распространен случай, когда теплотехническая неоднородность стеновой конструкции на реальном объекте еще ниже расчетной, потому что зависит от качества монтажа: наличие трещин, разломов, выбоин и иных дефектов изделий из газобетона может приводить к перерасходу строительного раствора, который выступает в качестве дополнительного теплопроводного включения, не учитываемого при расчете.

Рисунок 5. Конструктивное решение наружной двухслойной стены

В итоге мы получаем, что фактический коэффициент теплотехнической однородности существенно меньше, чем расчетное значение. Разница может составлять до 47%. Приведенное сопротивление теплопередаче подобных конструкций может быть меньше нормативного значения до 70%, что требует либо увеличивать толщину газобетонных блоков в составе двухслойной стеновой конструкции, либо использовать промежуточный слой из теплоизоляционных материалов.

Рисунок 6. Схемы расчетных фрагментов наружной двухслойной стены

«Результаты испытаний говорят о том, что закладываемый при проектировании коэффициент теплотехнической однородности 0,9 для стен из газобетона и кирпича для многих случаев является завышенным. Кроме того, проектировщики пользуются необоснованными значениями теплопроводности газобетона, — комментирует Александр Плешкин. — По факту такая конструкция не обеспечивает необходимое термическое сопротивление стен. Создать комфортный микроклимат, сократить размеры коммунальных платежей и повысить долговечность стен из газобетона и кирпича можно, благодаря включению теплоизоляции между газобетонным и лицевым (облицовочным) слоями. При выборе теплоизоляционного материала для конструкций такого рода особое внимание необходимо уделять значению сопротивления паропроницанию. Оно должно быть, как минимум на порядок меньше сопротивления паропроницанию несущего слоя наружной стены. Утепление стены из газобетона экономически обосновано и выгодно по сравнению с увеличением толщины газобетонной стены, при увеличении которого дополнительно нагружается фундамент и уменьшается полезная площадь помещений».

Влажность – важно ли это?

Хотелось бы отдельно отметить темы теплопроводности и влажности изделий из газобетона, которые являются сильными абсорбентами влаги, то есть могут впитывать значительное количество воды.

«Их фактическая влажность в начальный период эксплуатации может значительно превышать расчетную, это связано не только с процессом производства, транспортировки и складирования материала, но и с мокрыми процессами, которые происходят в доме во время его стройки – заливка стяжки, выравнивание стен и так далее. В этой связи теплопроводность изделий из газобетона может оказываться выше по сравнению с принятыми в проекте расчетными значениями, т. к. теплопроводность материала зависит от содержания влаги. Сложно поддается прогнозу количество лет через которое дом «выйдет» на проектные показатели. Это будет зависеть от климата, условий эксплуатации помещения и конструктивного решения стены – наличие вентиляционного зазора и правильно подобранных изоляционных слоев с точки зрения паропроницаемости. При грамотно спроектированной и выполненной конструкции выход на рабочий режим такой конструкции не должен превышать одного – двух лет», — комментирует Александр Плешкин.

Следует обращать пристальное внимание на вопрос испытания коэффициентов теплопроводности газобетона, а именно на условия влажности, при которых проводятся испытания.

Показатель теплопроводности определяют по ГОСТ 7076-99 «МАТЕРИАЛЫ И ИЗДЕЛИЯ СТРОИТЕЛЬНЫЕ. Метод определения теплопроводности и термического сопротивления при стационарном тепловом режиме». В данном документе расчеты проводятся для материала в сухом состоянии, не регламентируется при какой весовой влажности материала необходимо проводить испытания. Некоторые производители газобетона проводят испытания на теплопроводность материала ссылаясь на ГОСТ 31359-2007 «Бетоны ячеистые автоклавного твердения», в котором указаны значения весовой влажности, при которой производятся измерения: для условий «А» весовая влажность составляет 4%, для условий «Б» — 5%.

Читать еще:  Стена под старинный кирпич

Согласно СП 23-101-2004 «Проектирование тепловой защиты зданий» Приложение Д (или СП 50.13330.2012 «Тепловая защита зданий», Приложение Т) весовая влажность газобетона значительно превышает значения ГОСТ 31359-2007: для газо- и пенобетона плотности 1200;1000;800 весовая влажность составляет: 15% для условий «А» и 22% для условий «Б».

Расчетный коэффициент теплопроводности газобетона значительно занижен по сравнению с фактическим. Данный факт связан не только с особенностями использования материала в условиях влажности, но и с самой методикой испытаний теплопроводности газобетона — влажность при испытаниях снижена в 3,75 — 4,4 раза.

Такая разница в значениях влажности говорит о том, что после возведения конструкции газобетон на протяжении определенного периода времени достигает нормируемых значений равновесной весовой влажности, которая значительно выше той, при которой проводятся испытания теплопроводности материала.

В результате фактическое значение сопротивления теплопередаче здания не совпадает с расчетным. Данный факт говорит о снижении энергоэффективности здания и увеличении эксплуатационных затрат на отопление и кондиционирование.

«Таким образом, с помощью газобетона и кирпича вполне можно создать респектабельный, теплый и долговечный дом, — резюмирует Александр Плешкин. — Но только при строгом соблюдении технологии проектирования тепловой оболочки здания с учетом всех теплопроводных включений, корректных показателей влажности газобетона, которую он приобретет в процессе эксплуатации, а также при обязательном наличии теплоизоляционного слоя и вентиляционного зазора».

В последние десятилетия в нашей стране приобрели большую популярность двуслойные стены из газобетона и кирпича. Двуслойные стены дешевле полностью кирпичных, а архитектурный образ здания мало отличается. Но обеспечат ли такие фасады необходимый комфорт и долговечность дома? Разбираемся вместе с экспертом – техническим специалистом по коттеджному и малоэтажному строительству Корпорации ТЕХНОНИКОЛЬ Александром Плешкиным.

С 4 по 6 октября 2017 года в МВЦ «Екатеринбург-Экспо» (Екатеринбург) пройдет международный форум высотного и уникального строительства 100+ Forum Russia. Мероприятие проводится при поддержке Минстроя РФ, правительства Свердловской области, администрации города Екатеринбурга.

Облицовка одновременно с кладкой стен

Наружный слой из керамических, силикатных и других штучных изделий на поверхности стен называют облицовкой. Чаще всего облицовку выполняют одновременно с кладкой. Если для кладки используются одинаковые по высоте облицовочные и обычные кирпичи, то кирпичная кладка ведется обычным способом с использованием в наружной версте облицовочного кирпича. Если облицовка и кладка ведется различными по высоте кирпичами и камнями, то существуют три основных типа кладки.

Облицовку кирпичной кладки лицевым камнем (рис. 45) ведут методом обычной кладки. Сначала укладывают наружный ряд облицовочных камней. Затем, кладут два внутренних ряда кирпичей — внутреннюю версту и забутку. Облицовочный ряд камней перевязывают с кирпичной кладкой стены тычковым рядом облицовочных камней. Они как раз совпадают по высоте с двумя рядами кирпичной кладки и заходят половиной своей длины в кирпичную кладку. Кладка внутренней части стены и облицовки ведется по цепной системе перевязки.

рис. 45. Облицовка кирпичной стены лицевым камнем

При облицовке каменной кладки лицевым кирпичом (рис. 46) вначале выкладывают кирпичную облицовочную версту. Первый ряд облицовки делают из целых кирпичей, уложенных тычком, а три следующих — из цельных кирпичей уложенных ложком либо из половинок кирпича, уложенных тычком. Затем выкладывают внутреннюю часть стены из двух рядов камней по цепной системе перевязки. Для выравнивания высоты каменной кладки над тычковым рядом облицовочных кирпичей применяют резанные болгаркой кладочные камни или обычный (не лицевой) кирпич. Через каждые три ряда облицовки кирпичная облицовочная верста перевязывается с каменной стеной тычковыми облицовочными кирпичами. Облицовку выкладывают по многорядной системе перевязки. В углах тычкового (перевязочного) ряда укладывают две трехчетверки, в ложковых рядах — одну трехчетверку.

рис. 46. Облицовка каменной кладки лицевым кирпичом

Следует обратить внимание на то, что при облицовке кирпичом стен из мелкоячеистых бетонов (пенобетонов) у наружной облицовочной кирпичной версты и стены из пеноблоков будет разная величина усадки. Усадке подвержены все строительные элементы на основе обычного цемента (швы кладки из камней и кирпича, и самого пенобетонного блока изготовленного на цементном вяжущем). Тычковый ряд облицовочного кирпича, защемленный в каменной кладке стены, может быть срезан усадкой стены и перевязка облицовки со стеной исчезнет. Однако драматизировать ситуацию не нужно. Если вы используете пенобетонные блоки, полежавшие на складе фирмы-изготовителя, то усадочные процессы в блоках уже закончились. Мелкоячеистый бетон специфичный материал, он не хороший и не плохой, он такой, какой есть. Прочитайте инструкции к его хранению и применению, и строго следуйте им. Перевязку облицовки со стеной можно заменить на пластмассовые или нержавеющие стальные стержневые связи.

При облицовке кладки из обычного кирпича утолщенным облицовочным кирпичом (рис. 47) сначала выкладывают наружную версту из облицовочного кирпича. Один ряд тычком и три ряда ложком. Внутреннюю часть стены выкладывают обычным кирпичом высотой в четыре ряда по перевязочному тычковому ряду облицовочного кирпича.

рис. 47. Облицовка кирпичной кладки утолщенным облицовочным кирпичом

На рисунках 45–47 изображены три классических случая облицовки стен: когда облицовочные камни в два раза выше основных камней стены, когда высота двух облицовочных камней равна высоте камня стены и когда высота трех облицовочных камней равна высоте четырех камней стены, с учетом толщины растворных швов. Можно было бы привести пример, когда высота двух облицовочных камней равна высоте трех камней основной кладки. Сути дела это не меняет.

Чтобы особо не задумываться над способом облицовки стен, надо запомнить одно простое правило. Нужно сложить насухо две стопки камней, одну из облицовочного кирпича, другую из тех камней, которые будут уложены во внутреннюю часть стены. Когда две стопки примерно сравняются по высоте, посчитать количество камней в стопках. Количество камней в стопке с облицовкой укажет на количество рядов кладки, которые нужно будет уложить ложком, то есть по длине камня. Ложковые ряды можно разнообразить, заменив часть или все камни на половинки кирпича, тогда внешне такие кирпичи будут выглядеть как тычковые, хотя и не будут таковыми являться (рис. 46). Нижний и верхний ряды над и под ложковыми рядами нужно сделать тычками, то есть положить камень поперек стены, чтобы он вошел в зацепление с внутренними слоями кладки. Вот, в общем-то и вся премудрость. Высоты двух уложенных насухо стопок камней, простых и облицовочных, не должны быть абсолютно одинаковыми. Количество камней в них разное, а значит и количество растворных швов будет разным. Привязав высоту швов в обычной кладке к конкретному размеру, например, один сантиметр, можно будет подсчитать толщины швов в облицовочной кладке.

При использовании для облицовки камней сделанных по европейским стандартам нужно учесть одно обстоятельство. Если в нашей традиционной строительной практике каменщик старается не делать толстых швов, доводя их толщину до 8–12 мм, то европейский каменщик, наоборот, делает лицевые швы толстыми, доводя их толщину до 20 мм. Отсюда и уменьшенные размеры облицовочного кирпича изготовленного по европейским стандартам. Какой толщины сделать наружные швы и использовать ли в работе европейский кирпич, это решение сугубо индивидуальное.

Более полную информацию можно получить из справочного пособия к СНиПу II-22-81 «Проектирование и применение панельных и кирпичных стен с различными видами облицовок»

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector